辽宁省阜新市2025届数学高二上期末达标检测试题含解析_第1页
辽宁省阜新市2025届数学高二上期末达标检测试题含解析_第2页
辽宁省阜新市2025届数学高二上期末达标检测试题含解析_第3页
辽宁省阜新市2025届数学高二上期末达标检测试题含解析_第4页
辽宁省阜新市2025届数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省阜新市2025届数学高二上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.平行六面体中,若,则()A. B.1C. D.2.等差数列中,已知,则()A.36 B.27C.18 D.93.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.4.下列直线中,与直线垂直的是()A. B.C. D.5.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.46.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁7.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个8.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线9.在中,,满足条件的三角形的个数为()A.0 B.1C.2 D.无数多10.若点在椭圆的外部,则的取值范围为()A. B.C. D.11.已知,,则在上的投影向量为()A.1 B.C. D.12.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________14.甲、乙两人下棋,甲获胜的概率为,乙获胜的概率为,则甲、乙两人下成和棋的概率为___________.15.曲线在处的切线斜率为___________.16.甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.18.(12分)一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线(如图所示).选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为,其中,是常数.(1)当时,判断并证明的奇偶性;(2)当时,若最小值为,求的最小值.19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积20.(12分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.22.(10分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.2、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B3、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.4、C【解析】,,若,则,项,符合条件,故选5、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.6、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D7、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30

,综上,这样的平面α有2个,故选:B.8、B【解析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B9、B【解析】利用正弦定理得到,进而或,由,得,即可求解【详解】由正弦定理得,,或,,,故满足条件的有且只有一个.故选:B10、B【解析】根据题中条件,得到,求解,即可得出结果.【详解】因为点在椭圆的外部,所以,即,解得或.故选:B.11、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C12、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交14、##【解析】直接根据概率和为1计算得到答案.【详解】.故答案为:.15、##【解析】首先求得的导数,由导数的几何意义可得切线的斜率.【详解】因为函数的导数为,所以可得在处的切线斜率,故答案为:16、【解析】先由极差以及平均数得出,进而得出中位数.【详解】由可得,,,因为乙得分的平均值为24,所以,所以甲、乙两组数据的中位数是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.18、(1)偶函数(2)10【解析】(1)根据偶函数定义直接判断可知;(2)由基本不等式求得的最小值,得到a、b的关系,然后代入目标式,分离常数,然后可得.【小问1详解】当时,,定义域为R,因为所以为偶函数.【小问2详解】因为,所以,当且仅当,即时,取等号.由题知,即,因为,所以,即所以令,,则,所以,所以,当,即时,取等号.所以的最小值为10.19、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小问2详解】过点A作AE⊥BC于E,易知E为BC中点,以A为原点,AE,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则,,,.则设,.显然,是平面ACD的一个法向量,设平面MAC的一个法向量为.则有,取,解得由二面角M﹣AC﹣D的余弦值为,有,解得,所以M为PD中点.所以20、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则有,即,取.设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为;(2)假设线段上存在点,使得二面角的余弦值.设,则,从而,,.设平面的法向量,则有,即,取.设平面的法向量,则有,即,取.,解得:或(舍),故存在点满足条件,为上靠近点的三等分点【点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.21、(1)曲线的普通方程为;曲线的直角坐标方程为(2)【解析】(1)直接利用转换关系式把参数方程和极坐标方程转化为直角坐标方程;(2)易得满足直线的方程,转化为参数方程,代入曲线的普通方程,再利用韦达定理结合弦长公式即可得出答案.【小问1详解】解:曲线的参数方程为(为参数),转化为普通方程为,曲线的极坐标方程为,即,根据,转化为直角坐标方程为;【小问2详解】解:因为满足直线的方程,将转化为参数方程为(为参数),代入,得,设A、两点的参数分别为,则,所以.22、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论