吉林省扶余市第一中学2025届高二数学第一学期期末检测试题含解析_第1页
吉林省扶余市第一中学2025届高二数学第一学期期末检测试题含解析_第2页
吉林省扶余市第一中学2025届高二数学第一学期期末检测试题含解析_第3页
吉林省扶余市第一中学2025届高二数学第一学期期末检测试题含解析_第4页
吉林省扶余市第一中学2025届高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省扶余市第一中学2025届高二数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于52.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.163.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.4.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.5.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上6.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A. B.C. D.7.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等8.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等9.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立10.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.11.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.12.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.14.已知直线与双曲线交于两点,则该双曲线的离心率的取值范围是______15.在平面直角坐标系中,若抛物线上的点P到该抛物线焦点的距离为5,则点P的纵坐标为_______16.已知偶函数部分图象如图所示,且,则不等式的解集为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数18.(12分)(1)已知:函数有零点;:所有的非负整数都是自然数.若为假,求实数的取值范围;(2)已知:;:.若是的必要不充分条件,求实数的取值范围.19.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.20.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和21.(12分)在平面直角坐标系中,椭圆:的左顶点到右焦点的距离是3,离心率为(1)求椭圆的标准方程;(2)斜率为的直线经过椭圆的右焦点,且与椭圆相交于,两点.已知点,求的值22.(10分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题2、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A3、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D4、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D5、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.6、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.7、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D8、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D9、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.10、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立11、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.12、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、[﹣,0]【解析】建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可【详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0]故答案为:[,0]【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目14、【解析】分析可知,由可求得结果.【详解】双曲线的渐近线方程为,由题意可知,.故答案为:.15、4【解析】根据抛物线的定义,列出方程,即可得答案.【详解】由题意:抛物线的准线为,设点P的纵坐标为,由抛物线定义可得,解得,所以点P的纵坐标为4.故答案为:416、【解析】由函数的图象得出当时,,再由函数是偶函数,其图象的性质,即可得出答案.【详解】是偶函数,且,所以,由图象得当时,.又函数是偶函数,其图像关于y轴对称,当时,,所以不等式的解集为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.18、(1);(2).【解析】(1)易知为真命题,根据且命题的真假可知为假命题,结合函数零点与对应方程的根之间的关系得出,解不等式即可;(2)根据一元二次不等式的解法可得和,结合必要不充分条件的概念可得,利用集合与集合之间的关系即可得出答案.【详解】解:(1)对于:所有的非负整数都是自然数,显然正确.因为为假,所以为假.所以“函数没有零点”为真,所以,解得.所以实数的取值范围是.(2)对于:,解得或.对于,不等式的解集为,因为是的必要不充分条件,所以所以或,所以或,所以实数的取值范围是.19、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.20、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.21、(1);(2).【解析】(1)根据题意得到关于的方程,解之即可求出结果;(2)联立直线的方程与椭圆方程,结合韦达定理以及平面向量数量积的坐标运算即可求出结果.【小问1详解】因为椭圆的左顶点到右焦点的距离是3,所以又椭圆的离心率是,所以,解得,,从而所以椭圆的标准方程【小问2详解】因为直线的斜率为,且过右焦点,所以直线的方程为联立直线的方程与椭圆方程,消去,得,其中设,,则,因为,所以因此的值是22、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论