版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西百色市2025届数学高二上期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.2.数学中的数形结合也可以组成世间万物的绚丽画面,-些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C:为四叶玫瑰线.①方程(xy<0)表示的曲线在第二和第四象限;②曲线C上任一点到坐标原点0的距离都不超过2;③曲线C构成的四叶玫瑰线面积大于4π;④曲线C上有5个整点(横、纵坐标均为整数的点).则上述结论中正确的个数是()A.1 B.2C.3 D.43.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为()A. B.C.4 D.4.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁5.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.6.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设双曲线的离心率为,则下列命题中是真命题的为()A.越大,双曲线开口越小 B.越小,双曲线开口越大C.越大,双曲线开口越大 D.越小,双曲线开口越大8.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1779.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.210.已知直线的一个方向向量,平面的一个法向量,若,则()A.1 B.C.3 D.11.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.12.若两个不同平面,的法向量分别为,,则()A.,相交但不垂直 B.C. D.以上均不正确二、填空题:本题共4小题,每小题5分,共20分。13.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______14.若等比数列的前n项和为,且,则__________.15.某古典概型的样本空间,事件,则___________.16.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值18.(12分)已知的二项展开式中所有项的二项式系数之和为,(1)求的值;(2)求展开式的所有有理项(指数为整数),并指明是第几项19.(12分)某校在全体同学中随机抽取了100名同学,进行体育锻炼时间的专项调查.将调查数据按平均每天锻炼时间的多少(单位:分钟)分成五组:,,,,,得到如图所示的频率分布直方图.将平均每天体育锻炼时间不少于60分钟的同学定义为锻炼达标,平均每天体育锻炼时间少于60分钟的同学定义为锻炼不达标(1)求a的值,并估计该校同学平均每天体育锻炼时间的中位数;(2)在样本中,对平均每天体育锻炼时间不达标的同学,按分层抽样的方法抽取6名同学了解不达标的原因,再从这6名同学中随机抽取2名进行调研,求这2名同学中至少有一名每天体育锻炼时间(单位:分钟)在内的概率20.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标21.(12分)已知命题;命题.(1)若p是q的充分条件,求m的取值范围;(2)当时,已知是假命题,是真命题,求x的取值范围.22.(10分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D2、B【解析】对于①,由判断,对于②,利用基本不等式可判断,对于③,以为圆心,2为半径的圆的面积与曲线围成的面积进行比较即可,对于④,将和联立,求解出两曲线的切点,从而可判断【详解】对于①,由,得异号,方程(xy<0)关于原点及y=x对称,所以方程(xy<0)表示的曲线在第二和第四象限,所以①正确,对于②,因为,所以,所以,所以,所以由曲线的对称性可知曲线C上任一点到坐标原点0的距离都不超过2,所以②正确,对于③,由②可知曲线C上到原点的距离不超过2,而以为圆心,2为半径的圆的面积为,所以曲线C构成的四叶玫瑰线面积小于4π,所以③错误,对于④,将和联立,解得,所以可得圆与曲线C相切于点,,,,而点(1,1)不满足曲线方程,所以曲线在第一象限不经过任何整数点,由曲线的对称性可知曲线在其它象限也不经过任何整数点,所以曲线C上只有1个整点(0,0),所以④错误,故选:B3、A【解析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C作CD⊥x轴于点D,则,所以直观图是底为2、高为的平行四边形,所以面积为.故选:A.4、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题5、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C6、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B7、C【解析】根据双曲线的性质结合离心率对双曲线开口大小的影响即可得解.【详解】解:对于A,越大,双曲线开口越大,故A错误;对于B,越小,双曲线开口越小,故B错误;对于C,由,越大,则越大,双曲线开口越大,故C正确;对于D,越小,则越小,双曲线开口越小,故D错误.故选:C.8、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.9、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.10、D【解析】由向量平行充要条件代入解之即可解决.【详解】由,可知,则有,解之得故选:D11、D【解析】由=0可求解【详解】由题意,故选:D12、B【解析】由向量数量积为0可求.【详解】∵,,∴,∴,∴,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:14、5【解析】根据题意和等比数列的求和公式,求得,结合求和公式,即可求解.【详解】因为,若时,可得,故,所以,化简得,整理得,解得或,因为,解得,所以.故答案为:.15、##0.5【解析】根据定义直接计算得到答案.【详解】.故答案为:.16、①.##②.【解析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)联立直线方程和双曲线方程,利用弦长公式可求弦长.(2)根据圆过原点可得,设,从而,联立直线方程和双曲线方程后利用韦达定理化简前者可得所求的参数的值.【小问1详解】当时,直线,设,由可得,此时,故.【小问2详解】设,因为以为直径的圆经过坐标原点,故,故,由可得,故且,故.而可化为即,因为,所以,解得,结合其范围可得.18、(1)(2)【解析】(1)由二项式系数和公式可得答案;(2)求出的通项,利用的指数为整数可得答案.【小问1详解】的二项展开式中所有项的二项式系数之和,所以.【小问2详解】,因此时,有理项,有理项是第一项和第七项.19、(1),中位数为64;(2).【解析】(1)由频率和为1求参数a,根据中位数的性质,结合频率直方图求中位数.(2)首先由分层抽样求6名同学的分布情况,再应用列举法求概率.【详解】(1)由题设,,可得,∴中位数应在之间,令中位数为,则,解得.∴该校同学平均每天体育锻炼时间的中位数为64.(2)由题设,抽取6名同学中1名在,2名在,3名在,若1名在为,2名在为,3名在为,∴随机抽取2名的可能情况有共15种,其中至少有一名在内的共12种,∴这2名同学中至少有一名每天体育锻炼时间(单位:分钟)在内的概率为.20、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.21、(1);(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快速解读造价咨询招标
- 招标寻找专业可靠房地产销售代理公司
- 2024天津市小型建设工程施工合同范本
- 2024送气工聘用合同
- 建筑工具转让合同模板
- 物资丢失赔偿合同模板
- 外贸合同范例
- 护士证注册合同模板
- 燃气协议合同范例
- 玉器代销合同模板
- 建筑装饰装修工程安全文明施工专项检查表
- 水电站330kV开关站投运调试方案
- 采购管理系统中运用业务重组的几点思考
- 第二部分项目管理人员配备情况及相关证明、业绩资料
- 旅游发展产业大会总体方案
- 民用机场竣工验收质量评定标准
- 汽车应急启动电源项目商业计划书写作范文
- 浅谈“低起点-小步子-勤练习-快反馈”教学策略
- 磁制冷技术的研究及应用
- 电缆桥架安装施工组织设计(完整版)
- 两癌筛查质控评估方案
评论
0/150
提交评论