黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】_第1页
黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】_第2页
黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】_第3页
黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】_第4页
黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页黑龙江红光农场学校2024-2025学年数学九年级第一学期开学学业质量监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)分式有意义的条件是()A. B. C. D.2、(4分)如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8 B. C. D.103、(4分)如图,矩形ABCD中,O是对角线AC的中点,OE⊥AC,交AD于点E,连接CE.若AB=2,BC=4,则CE的长为()A.2.5 B.2.8 C.3 D.3.54、(4分)估算的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间5、(4分)已知:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,点P从B出发,沿折线BE-ED-DC匀速运动,运动到点C停止.P的运动速度为2cm/s,运动时间为t(s),△BPC的面积为y(cm2),y与t的函数关系图象如图②,则下列结论正确的有()①a=7②AB=8cm③b=10④当t=10s时,y=12cm2

A.1个 B.2个 C.3个 D.4个6、(4分)直线y=﹣x+1不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、(4分)在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四8、(4分)如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.1 B.1 C.3 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知是矩形内一点,且,,,那么的长为________.10、(4分)如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.

11、(4分)一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.12、(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.13、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.15、(8分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)16、(8分)计算:(1);(2).17、(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中的值为______;(2)求统计的这组初赛成绩数据的平均数、众数和中位数.18、(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)﹣﹣×+=.20、(4分)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形ABCD的面积为_____;周长为______.21、(4分)如图,四边形是正方形,直线分别过三点,且,若与的距离为6,正方形的边长为10,则与的距离为_________________.22、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“<”或“=”填空).23、(4分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________二、解答题(本大题共3个小题,共30分)24、(8分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.25、(10分)如图,在▱ABCD中,O是对角线AC的中点,AB⊥AC,BC=4cm,∠B=60°,动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,连结PO并延长交折线DA﹣AB于点Q,设点P的运动时间为t(s).(1)当PQ与▱ABCD的边垂直时,求PQ的长;(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.26、(12分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据分式的定义即可判断.【详解】依题意得0,解得,故选B.此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.2、D【解析】

要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】连接BM,∵点B和点D关于直线AC对称,

∴NB=ND,

则BM就是DN+MN的最小值,

∵正方形ABCD的边长是8,DM=2,

∴CM=6,

∴BM==1,

∴DN+MN的最小值是1.故选:D.此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.3、A【解析】

利用线段的垂直平分线的性质,得到与的关系,再由勾股定理计算出的长即可.【详解】解:四边形是矩形,,,,,,设,则,在中,根据勾股定理可得,即,解得,故选:.本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于的方程时有时出现错误,而误选其它选项.4、C【解析】

先估算出的大小,然后求得的大小即可.【详解】解:9<15<16,3<<4,5<<6,故选C.本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.5、B【解析】

先通过t=5,y=20计算出AB长度和BC长度,则DE长度可求,根据BE+DE长计算a的值,b的值是整个运动路程除以速度即可,当t=1时找到P点位置计算△BPC面积即可判断y值.【详解】解:当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为20,∴BE=5×2=1.在Rt△ABE中,利用勾股定理可得AB=8,又,所以BC=1.则ED=1-6=2.当P点从E点到D点时,所用时间为2÷2=2s,∴a=5+2=3.故①和②都正确;P点运动完整个过程需要时间t=(1+2+8)÷2=11s,即b=11,③错误;当t=1时,P点运动的路程为1×2=20cm,此时PC=22-20=2,△BPC面积为×1×2=1cm2,④错误.故选:B.本题主要考查动点问题的函数问题,解题的关键是熟悉整个运动过程,找到关键点(一般是函数图象的折点),对应数据转化为图形中的线段长度.6、C【解析】

由k=﹣1<0,b=1>0,即可判断出图象经过的象限.【详解】解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,∴直线的图象经过第一,二,四象限.∴不经过第三象限,故选:C.本题考查了一次函数的图象,掌握一次函数图象与系数的关系是解题的关键.7、C【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.8、C【解析】

利用基本作图得到BG平分∠ABC,再证明△BCG为等腰直角三角形得到GC=CB=4,从而计算CD-CG即可得到DG的长.【详解】由图得BG平分∠ABC,

∵四边形ABCD为矩形,CD=AB=7,

∴∠ABC=∠B=,

∴∠CBG=,

∴△BCG为等腰直角三角形,

∴GC=CB=4,

∴DG=CD−CG=7−4=3.

故选:C.本题考查等腰直角三角形的性质,解题的关键是得到GC=CB=4.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H,设CF=x,FB=y,AH=s,HB=t,则可得x2-y2=16-9=7,t2-s2=32-12=8,整理得OD2=x2+s2=(y2+t2)-1=9-1=8,即可求得AD的长.【详解】如图,过O作EF⊥AD于E,交BC于F;过O作GH⊥DC于G,交AB于H.设CF=x,FB=y,AH=s,HB=t,∴OG=x,DG=s,∴OF2=OB2-BF2=OC2-CF2,即42-x2=32-y2,∴x2-y2=16-9=7①同理:OH2=12-s2=32-t2∴t2-s2=32-12=8②又∵OH2+HB2=OB2,即y2+t2=9;①-②得(x2+s2)-(y2+t2)=-1,∴OD2=x2+s2=(y2+t2)-1=9-1=8,∴OD=2.故答案为2.本题考查了矩形对角线相等且互相平分的性质,考查了勾股定理在直角三角形中的运用,本题中整理计算OD的长度是解题的关键.10、105°【解析】

根据∠1=30°,得∠A1MA+∠DMD1=180°-30°=150°,根据折叠的性质,得∠A1MB=AMB,∠D1MC=∠DMC,从而求解.【详解】由折叠,可知∠A1MB=AMB,∠D1MC=∠DMC.因为∠1=30°,所以∠A1MA+∠DMD1=180°-30°=150°所以∠AMB+∠DMC=∠A1MA+∠DMD1=×150°=75°,所以∠BMC的度数为180°-75°=105°.故答案为:105°本题考查的是矩形的折叠问题,理解折叠后的角相等是关键.11、13.5【解析】

从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度,根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答【详解】从图形可以看出进水管的速度为:60÷6=10(升/分),出水管的速度为:10-(90-60)÷(15-6)=(升/分),关闭进水管后,放水经过的时间为:90÷=13.5(分).此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据12、620【解析】

设慢车的速度为a千米/时,快车的速度为b千米/时,根据题意可得5(a+b)=800,,联立求出a、b的值即可解答.【详解】解:设慢车的速度为a千米/时,快车的速度为b千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,再根据题意快车休息2个小时后,以原速的继续向甲行驶,则快车到达甲地的时间为:,同理慢车回到甲地的时间为:,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时,即:,化简得5a=3b,联立得,解得,所以两车相遇的时候距离乙地为=500千米,快车到位甲地的时间为=2.5小时,而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了=120千米,所以此时慢车距离乙地为500+120=620千米,即快车到达甲地时,慢车距乙地620千米.故答案为:620.本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.13、【解析】

根据锐角三角函数的定义以及正方形的性质即可求出答案.【详解】解:设正方形的边长为x,∴CE=ED=x,∴AE=AC-CE=12-x,在Rt△ABC中,,在Rt△ADE中,,∴,∴解得:x=,故答案为:.本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)8【解析】

(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【详解】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD=,∴△ABC的面积=BC•AD=×8×2=8.此题考查平行四边形的判定与性质,等腰三角形的性质,矩形的判定与性质,解题关键在于求出∠ADB=90°.15、(1);(2);(3)摸到的两球颜色相同的概率【解析】

(1)直接利用概率公式计算;(2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;(3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.【详解】(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.(2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.(3)画树状图为:共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,所以摸到两球颜色相同的概率.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.16、(1)4,(2)2.【解析】

(1)分别计算二次根式的乘法、去绝对值符号以及零指数幂,然后再进行加减运算即可;(2)先把括号里的二次根式进行化简合并后,再根据二次根式的除法法则进行计算即可得解.【详解】(1);=,=4;(2)==,=2.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17、(1)25;(2)平均数为:,众数为:,中位数为.【解析】

(1)用整体1减去其它所占的百分比,即可求出a的值;

(2)根据平均数、众数和中位数的定义分别进行解答即可;【详解】解:(1)根据题意得:

1-20%-10%-15%-30%=25%;

则a的值是25;

故答案为:25;(2)(人)平均数为:.众数为:.按跳高成绩从低到高排列,第10个数据、第11个数据都是,所以中位数为.考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.18、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】

(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;

(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;

②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、3+.【解析】试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.解:原式=4﹣﹣+2=3﹣+2=3+.故答案为3+.20、24cm220cm【解析】分析:菱形的面积等于对角线积的一半;菱形的对角线互相垂直且平分构建直角三角形后,用勾股定理求.详解:根据题意得,菱形的面积为×6×8=24cm2;菱形的周长为4×=4×5=20cm.故答案为24cm2;20cm.点睛:本题考查了菱形的性质,菱形的对角线互相平分且垂直,菱形的面积等于对角线积的一半,菱形中常常根据对角线的性质构造直角三角形,用勾股定理求线段的长.21、1【解析】

画出l1到l2,l2到l3的距离,分别交l2,l3于E,F,通过证明△ABE≌△BCF,得出BF=AE,再由勾股定理即可得出结论.【详解】过点A作AE⊥l1,过点C作CF⊥l2,∴∠CBF+∠BCF=90°,四边形ABCD是正方形,∴AB=BC=CD=AD,∴∠DAB=∠ABC=∠BCD=∠CDA=90°,∴∠ABE+∠CBF=90°,∵l1∥l2∥l3,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BF=AE,∴BF2+CF2=BC2,∵正方形ABCD的面积为100,∴CF2=100-62=64,∴CF=1.故答案为:1.本题主要考查了正方形的性质,全等三角形的判定与性质以及正方形面积的求解方法,能正确作出辅助线是解此题的关键,难度适中.22、【解析】

根据方差的意义进行判断.【详解】因为甲组数有波动,而乙组的数据都相等,没有波动,所以>.故答案为:>.此题考查方差,解题关键在于掌握方差的意义.23、(0,0)【解析】解:将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(1-1,2-2),即(0,0).故答案填:(0,0).点评:此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.二、解答题(本大题共3个小题,共30分)24、4【解析】

首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】设△ABP中AB边上的高是h.∵S矩形ABCD=3S△PAB,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为4.故答案为:4.本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.25、(1)PQ=cm或2cm;(2)t=秒;(3)t为1秒或秒.【解析】

(1)分当PQ⊥BC和当PQ⊥CD两种情况,利用含30度角的直角三角形的性质即可得出结论;

(2)当点P在BC边和当点P在CD上两种情况,利用矩形的性质即可得出结论;

(3)利用平行四边形的性质得出S△ABC=S△ACD=S▱ABCD,进而分当点Q在边AD上和点Q在边AB上利用三角形的中线的性质即可得出结论.【详解】解:(1)当PQ⊥BC时,如图1,∵AB⊥AC,∴∠BAC=90°,在Rt△ABC中,BC=4cm,∠B=60°,∴∠ACB=30°,AB=2,AC=2,∵点O是AC的中点,∴OC=AC=,在Rt△OPC中,OP=OC=,易知,△AOQ≌△COP,∴OQ=OP,∴PQ=2OP=cm,当PQ⊥CD时,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC=90°,∴点P与点C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论