2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题含解析_第1页
2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题含解析_第2页
2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题含解析_第3页
2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题含解析_第4页
2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省昆明市官渡区艺卓中学高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.132.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=13.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.64.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.5.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.6.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.7.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.98.函数的最小值为()A. B.1C.2 D.e9.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.10.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.1311.概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎12.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,若面积,则______14.已知点,,点P在x轴上,且,则点P的坐标为______15.已知随机变量X服从正态分布,若,则______16.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值18.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和(Ⅰ)求k的值及f(x)的表达式(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值19.(12分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值20.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且,是的中点(1)求证:平面;(2)求异面直线与所成的角的余弦值21.(12分)已知数列中,,___________,其中.(1)求数列的通项公式;(2)设,求证:数列是等比数列;(3)求数列的前n项和.从①前n项和,②,③且,这三个条件中任选一个,补充在上面的问题中并作答.22.(10分)如图1所示,在四边形ABCD中,,,,将△沿BD折起,使得直线AB与平面BCD所成的角为45°,连接AC,得到如图2所示的三棱锥(1)证明:平面ABD平面BCD;(2)若三棱锥中,二面角的大小为60°,求三棱锥的体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.2、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.3、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D4、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.5、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B6、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.7、A【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.8、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B9、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D10、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B11、A【解析】利用独立事件计算出甲、乙各自赢得赌金的概率,由此可求得两人各分配的金额.【详解】甲赢得法郎的概率为,乙赢得法郎的概率为,因此,这法郎中分配给甲法郎,分配给乙法郎.故选:A.12、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】结合三角形面积公式与余弦定理得,进而得答案.【详解】解:由三角形的面积公式得,所以,因为,所以,即,因为,所以故答案为:14、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:15、##25【解析】根据正态分布曲线的对称性即可求得结果.【详解】,,又,,.故答案为:.16、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0)=-a18、,因此.,当隔热层修建厚时,总费用达到最小值70万元【解析】解:(Ⅰ)设隔热层厚度为,由题设,每年能源消耗费用为.再由,得,因此.而建造费用为最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令,即.解得,(舍去)当时,,当时,,故是的最小值点,对应的最小值为当隔热层修建厚时,总费用达到最小值为70万元19、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线方程代入抛物线方程,判别式大于0保证相交,由韦达定理得,由弦长公式得弦长,再计算出三角形的面积后可解得【小问1详解】选条件①:由准线方程为知,所以抛物线C的方程为选条件②:因为抛物线的焦点坐标为所以由已知得椭圆的一个焦点为.所以,又,所以,所以抛物线C的方程为选条件③:由题意可知得,当F,A,B三点共线时,,由两点间距离公式,解得,所以抛物线C的方程为.【小问2详解】把代入方程,可得,设,,联立,消去y可得,由,解得,又知,,所以,由到直线的距离为,所以,即,解得或经检验均满足,所以m的值为或.20、(1)证明见解析;(2).【解析】(1)设为中点,连接,,证明四边形为平行四边形即可;(2)确定异面直线与所成的角为,计算三角形各边长,根据余弦定理计算得到答案.【小问1详解】设为中点,连接,,∵为中点,是的中点,,,故,且,故,且,∴四边形为平行四边形,∴,平面,平面,故平面.【小问2详解】∵,故异面直线与所成的角为,在中:,,.根据余弦定理:,所以异面直线与所成的角的余弦值为.21、(1)(2)见解析(3)【解析】(1)选①,根据与的关系即可得出答案;选②,根据与的关系结合等差数列的定义即可得出答案;选③,利用等差中项法可得数列是等差数列,再求出公差,即可得解;(2)求出数列的通项公式,再根据等比数列的定义即可得证;(3)求出数列的通项公式,再利用错位相减法即可得出答案.【小问1详解】解:选①,当时,,当时,也成立,所以;选②,因为,所以,所以数列是以为公差的等差数列,所以;选③且,因为,所以数列是等差数列,公差,所以;【小问2详解】解:由(1)得,则,所以数列是以为首项,为公比的等比数列;【小问3详解】解:,,①,②由①②得,所以.22、(1)证明见解析;(2).【解析】(1)过作面,连接,结合题设易知,根据过面外一点在该面上垂线性质知重合,再应用面面垂直的判定证明结论.(2)面中过作,结合题设构建空间直角坐标系,设并确定相关点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论