版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省安庆一中、安师大附中、铜陵一中、马鞍山二中高二上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.32.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.3.已知,为椭圆的左、右焦点,P为椭圆上一点,若,则P点的横坐标为()A. B.C.4 D.94.设满足则的最大值为A. B.2C.4 D.165.命题:,的否定为()A., B.不存在,C., D.,6.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.7.已知数列中,,则()A.2 B.C. D.8.设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或 B.或C.或 D.或9.已知,,则下列结论一定成立的是()A. B.C. D.10.在的展开式中,的系数为()A. B.5C. D.1011.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.12.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分。13.若动直线分别与函数和的图像交于A,B两点,则的最小值为______14.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.15.i为虚数单位,复数______16.抛物线上一点到其焦点的距离为,则的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面18.(12分)如图所示,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点、作底面圆的切线,两切线相交于点,点是切线与圆的切点(1)证明:平面;(2)若平面与平面所成锐二面角的余弦值为,求该圆锥的体积19.(12分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.20.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标21.(12分)已知直线过点,且其倾斜角是直线的倾斜角的(1)求直线的方程;(2)若直线与直线平行,且点到直线的距离是,求直线的方程22.(10分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D2、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.3、B【解析】设,,根据向量的数量积得到,与椭圆方程联立,即可得到答案;【详解】设,,,与椭圆联立,解得:,故选:B4、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D6、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.7、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.8、B【解析】由已知得集合M表示以点圆心,以2半径左半圆,与y轴的交点为,集合N表示以点为圆心,以r为半径的圆,当圆C与圆O相外切于点P,有且仅有一个元素时,圆C过点M时,有且有两个元素,当圆C过点N,有且仅有一个元素,由此可求得r的取值范围.【详解】解:由得,所以集合M表示以点圆心,以2半径的左半圆,与y轴的交点为,集合表示以点为圆心,以r为半径的圆,如下图所示,当圆C与圆O相外切于点P时,有且仅有一个元素时,此时,当圆C过点M时,有两个元素,此时,所以,当圆C过点N时,有且仅有一个元素,此时,所以,所以当有且仅有一个元素时,则r的取值范围为或,故选:B.9、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.10、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项11、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D12、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.14、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:15、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.16、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.18、(1)证明见解析;(2).【解析】(1)由线面垂直、切线的性质可得、,再根据线面垂直的判定即可证结论.(2)若,构建为原点,、、为x、y、z轴的空间直角坐标系,求面、面的法向量,利用空间向量夹角的坐标表示及其对应的余弦值求R,最后由圆锥的体积公式求体积.【小问1详解】由题设,底面圆,又是切线与圆的切点,∴底面圆,则,且,而,∴平面.【小问2详解】由题设,若,可构建为原点,、、为x、y、z轴的空间直角坐标系,又,可得,∴,,,有,,若是面的一个法向量,则,令,则,又面的一个法向量为,∴,可得,∴该圆锥的体积19、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,从而得到,求出椭圆方程;(2)分直线斜率存在和斜率不存在,结合题干条件得到,进而求出直线方程.【小问1详解】∵∴,又的面积最大值,则,所以,从而,,故椭圆的方程为:;【小问2详解】①当直线的斜率存在时,设,代入③整理得,设、,则,所以,点到直线的距离因为,即,又由,得,所以,.而,,即,解得:,此时;②当直线的斜率不存在时,,直线交椭圆于点、.也有,经检验,上述直线均满足,综上:直线的方程为或.【点睛】圆锥曲线中,有关向量的题目,要结合条件选择不同的方法,一般思路有转化为三角形面积,或者线段的比,或者由向量得到共线等.20、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.21、(1);(2)或【解析】(1)先求得直线的倾斜角,由此求得直线的倾斜角和斜率,进而求得直线的方程;(2)设出直线的方程,根据点到直线的距离列方程,由此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度分享汇编【人事管理篇】十篇
- 单位管理制度范例选集【人事管理】十篇
- 《学校组织结构》课件
- 《建筑环境管理技术》课件
- 《纸板的创想-坐椅设计》课件
- 2024年公务员个人年终总结
- 2014年高考语文试卷(福建)(空白卷)
- 税务稽查事项总结
- 双十二旅游狂欢节
- 乐器销售工作总结
- 2025中国地震应急搜救中心公开招聘应届毕业生5人高频重点提升(共500题)附带答案详解
- 部编版八年级初二语文上册第六单元《写作表达要得体》说课稿
- 辽宁沈阳市文体旅产业发展集团有限公司招聘笔试冲刺题2024
- 政治-2025年八省适应性联考模拟演练考试暨2025年四川省新高考教研联盟高三年级统一监测试题和答案
- 2024年中国医药研发蓝皮书
- 坍塌、垮塌事故专项应急预案(3篇)
- 2024年融媒体中心事业单位考试工作人员另选录用55人内部选题库及参考答案(研优卷)
- 陕西省安康市2023-2024学年高一上学期期末考试 生物 含解析
- WPS Office办公软件应用教学教案
- 2024年时政热点知识竞赛试卷及答案(共四套)
- 幼儿园后勤主任年终总结
评论
0/150
提交评论