海口市重点中学2025届高二数学第一学期期末考试模拟试题含解析_第1页
海口市重点中学2025届高二数学第一学期期末考试模拟试题含解析_第2页
海口市重点中学2025届高二数学第一学期期末考试模拟试题含解析_第3页
海口市重点中学2025届高二数学第一学期期末考试模拟试题含解析_第4页
海口市重点中学2025届高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海口市重点中学2025届高二数学第一学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆2.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°3.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.4.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.5.若,则下列结论不正确的是()A. B.C. D.6.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为7.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,8.在四棱锥中,底面ABCD是正方形,E为PD中点,若,,,则()A. B.C. D.9.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.810.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.52211.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个12.命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为()A.0 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知直线:和:,且,则实数__________,两直线与之间的距离为__________14.已知定点,动点分别在直线和上运动,则的周长取最小值时点的坐标为__________.15.某工厂的某种型号的机器的使用年限和所支出的维修费用(万元)有下表的统计资料:23456223.85.56.57.0根据上表可得回归直线方程,则=_____.16.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项18.(12分)求函数在区间上的最大值和最小值19.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标20.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:21.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.22.(10分)如图,四棱锥中,,,,平面,点F在线段上运动.(1)若平面,请确定点F的位置并说明理由;(2)若点F满足,求平面与平面的夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.2、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.3、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决4、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D5、B【解析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.6、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.7、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:8、C【解析】根据向量线性运算法则计算即可.【详解】故选:C9、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.10、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.11、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.12、D【解析】首先判断原命题的真假,写出其逆命题,即可判断其真假,再根据互为逆否命题的两个命题同真假,即可判断;【详解】解:因为命题“,则”为真命题,所以其逆否命题也为真命题;其逆命题为:则,显然也为真命题,故其否命题也为真命题;故命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题有4个;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.-4;②.2【解析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线和,,,解得;∴两直线与间的距离是:.故答案为:;2.14、【解析】作点分别关于直线和的对称点,根据对称性即可求出三角形周长的最小值,利用三点共线求出的坐标.【详解】如图所示:定点关于函数对称点,关于轴的对称点,当与直线和的交点分别为时,此时的周长取最小值,且最小值为此时点的坐标满足,解得,即点.故答案为:.15、08##【解析】根据表格中的数据求出,将点代入回归直线求出即可.【详解】由表格可得,,由于回归直线过点,故,解得,故答案为:0.08.16、【解析】结合点差法求得正确答案.【详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为18、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,19、(1)(2)证明见解析,定点坐标为【解析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【点睛】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.20、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,∴得证,故不等式对任意恒成立21、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2公比为2的等比数列;【小问2详解】解:由(1)知,,所以,所以,检验时也满足上式,所以,所以,令,所以,故当即时,取得最小值,所以.22、(1)F为BD的中点,证明见解析;(2).【解析】(1)由为的中点,取的中点,连接易证四边形为平行四边形,得到,再利用线面平行的判定定理证明;(2)根据题意可得平面ABC与平面AFC的夹角为二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论