版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西桂林市十八中高一数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.2.若,则有()A.最大值 B.最小值C.最大值2 D.最小值23.的值是()A. B.C. D.4.若正实数满足,(为自然对数的底数),则()A. B.C. D.5.若直线经过两点,且倾斜角为45°,则m的值为A. B.1C.2 D.6.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.47.函数在区间上的图象可能是()A. B.C. D.8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程(为时间),则下图与故事情节相吻合的是()A. B.C. D.9.函数的定义域是A. B.C. D.10.已知,且,则的最小值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数单调递增区间为_____________12.已知函数则的值等于____________.13.直线与直线平行,则实数的值为_______.14.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________15.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象16.已知幂函数的图象过点,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过18.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.19.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).20.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量(毫克)与药熏时间(小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量(毫克)达到最大值.此后,教室内每立方米空气中的药物含量(毫克)与时间(小时)的函数关系式为(为常数).已知从药熏开始,教室内每立方米空气中的药物含量(毫克)关于时间(小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室?21.已知函数,(1)求函数的单调递增区间;(2)当时,方程恰有两个不同的实数根,求实数的取值范围;(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.2、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.3、C【解析】根据诱导公式即可求出【详解】故选:C4、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C5、A【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值.【详解】因为经过两点,的直线的倾斜角为45°,∴,解得,故选A【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题.6、D【解析】令则即当时,当时,则令,,由图得共有个点故选7、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C8、B【解析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率变化即可.【详解】解:对于乌龟,其运动过程分为两段:从起点到终点乌龟没有停歇,一直以匀速前进,其路程不断增加;到终点后,等待兔子那段时间路程不变;对于兔子,其运动过程分三段:开始跑的快,即速度大,所以路程增加的快;中间由于睡觉,速度为零,其路程不变;醒来时追赶乌龟,速度变大,所以路程增加的快;但是最终是乌龟到达终点用的时间短.故选:B【点睛】本题考查利用函数图象对实际问题进行刻画,是基础题.9、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.10、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:12、18【解析】根据分段函数定义计算【详解】故答案为:1813、【解析】根据直线一般式,两直线平行则有,代入即可求解.【详解】由题意,直线与直线平行,则有故答案为:【点睛】本题考查直线一般式方程下的平行公式,属于基础题.14、(2,0,0)(答案不唯一)【解析】利用空间两点间的距离求解.【详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)15、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;16、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以二次函数在给定区间求值域的方法去解决即可.【小问1详解】令,得,由实际意义和题设条件知,故,(当且仅当时取等号)所以炮的最大射程为;【小问2详解】,由,可知因此,所以该类型榴弹炮发射的高度不会超过18、(1)或(2)【解析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)化简集合,由,得,列不等式求解.【小问1详解】化简,,所以或.【小问2详解】,因为,所以,所以,所以实数的取值范围为19、(1)最小正周期T=π;单调递减区间为(k∈Z);(2)图象见解析.【解析】(1)利用二倍角公式化简函数,再根公式求函数的周期和单调递减区间;(2)利用“五点法”画出函数的图象.【详解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函数f(x)的最小正周期T==π,当2kπ+≤2x+≤2kπ+π,k∈Z,时,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函数f(x)单调递减区间为[kπ+,kπ+π](k∈Z)(2)图象如下:20、(1);(2)0.8小时.【解析】(1)时,设,由最高点求出,再依据最高点求出参数,从而得函数解析式;(2)解不等式可得结论【详解】解:(1)依题意,当时,可设,且,解得又由,解得,所以(2)令,即,得,解得,即至少需要经过后,学生才能回到教室.21、(1);(2);(3)【解析】(1)由余弦函数的单调性,解不等式,,即可求出;(2)利用函数的性质,结合在时的单调性与最值,可得实数的取值范围;(3)先求出的解析式,然后利用图象关于原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 徐州工程学院《电磁学》2022-2023学年第一学期期末试卷
- 信阳师范大学《移动应用开发》2023-2024学年第一学期期末试卷
- 遇到财务危机的应对方案计划
- 代购服务委托合同三篇
- 实验室溢洒处置考试评分表
- 西南交通大学《并行计算》2021-2022学年第一学期期末试卷
- 西京学院《数字多媒体作品创作》2021-2022学年第一学期期末试卷
- 西北大学《中国新诗研究》2023-2024学年第一学期期末试卷
- 西北大学《面向对象程序设计双语》2022-2023学年第一学期期末试卷
- 《中国环境法学》 课件 第10、11章 供用电等合同、中国环境行政执法
- 四川省内江市2023-2024学年高一上学期期末检测物理试题
- 高标准基本农田建设项目监理文件
- 城市园林绿化工程施工及验收规范
- 职业生涯规划羽毛球教练员
- 肠道菌群移植培训课件
- 幼儿园美术《各种各样的鱼》课件
- 你是独一无二的自己主题班会课件
- 探针台行业介绍分析
- 基层消防指挥员培训课件
- 鲜红斑痣疾病演示课件
- 小儿重症肺炎护理查房疑难病例讨论
评论
0/150
提交评论