河南省封丘2025届数学九上开学综合测试试题【含答案】_第1页
河南省封丘2025届数学九上开学综合测试试题【含答案】_第2页
河南省封丘2025届数学九上开学综合测试试题【含答案】_第3页
河南省封丘2025届数学九上开学综合测试试题【含答案】_第4页
河南省封丘2025届数学九上开学综合测试试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页河南省封丘2025届数学九上开学综合测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点A(–2,)、B(–1,)、C(1,)都在反比例函数(为常数)的图像上,则、、的大小关系为()A. B. C. D.2、(4分)下列多项式中,能用完全平方公式因式分解的是()A.m2mnn2 B.x2y22xyC.a22a D.n22n43、(4分)己知一次函数,若随的增大而增大,则的取值范围是()A. B. C. D.4、(4分)分式的计算结果是()A. B. C. D.5、(4分)有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.56、(4分)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7 B.9 C.11 D.147、(4分)9的算术平方根是()A.﹣3 B.±3 C.3 D.8、(4分)下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,一次函数的图象经过点,则关于的一元一次方程的解为___________.10、(4分)如图,点A、B都在反比例函数y=(x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.11、(4分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为______cm.12、(4分)计算:____.13、(4分)当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.15、(8分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.16、(8分)某校数学兴趣小组根据学习函数的经验,对函数y=|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:X…﹣4﹣3﹣2﹣101234…Y…32.5m1.511.522.53…(1)其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)当2<y≤3时,x的取值范围为.17、(10分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润18、(10分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知:等腰三角形ABC的面积为30,AB=AC=10,则底边BC的长度为_________m.20、(4分)阅读下面材料:在数学课上,老师提出如下问题:已知:如图,△ABC及AC边的中点O.求作:平行四边形ABCD.①连接BO并延长,在延长线上截取OD=BO;②连接DA、DC.所以四边形ABCD就是所求作的平行四边形.老师说:“小敏的作法正确.请回答:小敏的作法正确的理由是__________.21、(4分)点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。22、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=1.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.23、(4分)平行四边形ABCD中,若,=_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知直线与x轴交于点,与y轴交于点,把直线沿x轴的负方向平移6个单位得到直线,直线与x轴交于点C,与y轴交于点D,连接BC.如图,分别求出直线和的函数解析式;如果点P是第一象限内直线上一点,当四边形DCBP是平行四边形时,求点P的坐标;如图,如果点E是线段OC的中点,,交直线于点F,在y轴的正半轴上能否找到一点M,使是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.25、(10分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).(1)写出B点的坐标;(2)求抛物线的函数解析式;(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.26、(12分)旅客乘乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数.其图象如图所示.(1)当旅客需要购买行李票时,求出y与x之间的函数关系式;(2)当旅客不愿意购买行李票时,最多可以携带多少行李?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

首先根据可得反比例函数的图象在第一、三象限,因此可得在x的范围内,随着x的增大,y在减小,再结合A、B、C点的横坐标即可得到、、的大小关系.【详解】解:根据,可得反比例函数的图象在第一、三象限因此在x的范围内,随着x的增大,y在减小因为A、B两点的横坐标都小于0,C点的横坐标大于0因此可得故选C.本题主要考查反比例函数的性质,关键在于判断反比例函数的系数是否大于0.2、A【解析】分析:根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的1倍,对各选项分析判断后利用排除法求解.详解:A.m1﹣mn+n1其中有两项m1、n1能写成平方和的形式,mn正好是m与n的1倍,符合完全平方公式特点,故本选项正确;B.x1﹣y1﹣1xy其中有两项x1、-y1不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;C.a1﹣1a+中1a不是a与的积的1倍,不符合完全平方公式特点,故本选项错误;D.n1﹣1n+4中,1n不是n与1的1倍,不符合完全平方公式特点,故此选项错误.故选A.点睛:本题主要考查了能用完全平方公式分解因式的式子特点,熟记公式结构是解题的关键.完全平方公式:a1±1ab+b1=(a±b)1.3、A【解析】

根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.【详解】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选A.一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.4、C【解析】

解决本题首先应通分,最后要注意将结果化为最简分式.【详解】解:原式=,故选C.本题考查了分式的加减运算,掌握运算法则是解题关键.5、A【解析】这20个数的平均数是:,故选A.6、B【解析】

先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:

∵CD:BD=3:1.

设CD=3x,则BD=1x,

∴BC=CD+BD=7x,

∵BC=21,

∴7x=21,

∴x=3,

∴CD=9,

过点D作DE⊥AB于E,

∵AD是∠BAC的平分线,∠C=90°,

∴DE=CD=9,

∴点D到AB边的距离是9,

故选B.本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.7、C【解析】试题分析:9的算术平方根是1.故选C.考点:算术平方根.8、C【解析】

根据全等三角形的判定定理逐项分析,作出判断即可.【详解】解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.综上所述,正确的说法有4个.故选:C.本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

所求方程的解,即为函数y=kx+b图象与x轴交点横坐标,确定出解即可.【详解】解:方程kx+b=0的解,即为函数y=kx+b图象与x轴交点的横坐标,

∵直线y=kx+b过B(-1,0),

∴方程kx+b=0的解是x=-1,

故答案为:x=-1.此题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为kx+b=0(k,b为常数,k≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b确定它与x轴的交点的横坐标的值.10、2.【解析】

过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,由平行线分线段成比例定理得AM=2y,根据=1,即可求得xy=k的值.【详解】解:如图,过点A作AN⊥x轴交x轴于点N,交BC于点M,设B(x,y),则BC=x,MN=y,∵BC∥x轴,DA=3DC,∴AN=3MN,AM=2MN∴MN=y,AM=2y∵,S△ABD=1∴,∴xy=2,∵反比例函数y=(x>0),∴k=xy=2.

故答案为:2.本题考查平行线分线段成比例定理,反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答即可.解:∵直角三角形斜边上的中线长为6,∴这个直角三角形的斜边长为1.考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.12、1【解析】

根据二次根式的乘法运算法则进行计算即可.【详解】解:.故答案为:1.本题考查了二次根式的乘法运算,掌握基本运算法则是解题的关键.13、-7.【解析】

根据负整数指数幂的意义化为分式方程求解即可.【详解】∵与的值相等,∴=,∴,两边乘以(x+1)(x-2),得2(x-2)=3(x+1),解之得x=-7.经检验x=-7是原方程的根.故答案为-7.本题考查了负整数指数幂的意义及分式方程的解法,解分式方程的基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.三、解答题(本大题共5个小题,共48分)14、见解析【解析】

根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,AD∥BC,∴DE∥BF,∠EBC=∠AEB,∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,∴∠ADF=ADC,∠EBC=ABC,∴∠ADF=∠EBC,∴∠AEB=∠ADF,∴BE∥DF,∵DE∥BF,∴四边形BEDF是平行四边形.本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.15、(1)证明见解析(2)(3)【解析】

(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;(2)在直角三角形ADC中利用勾股定理求解即可;(3)求四边形ABED的面积,可分解为求梯形ABMD与三角形DME的面积,然后求两面积之和即可.【详解】(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,∴CF为△DME的中位线,∴DF=FE;(2)解:由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中,AC=AD•sin∠ADC=a,∴BE=a.(3)可将四边形ABED的面积分为两部分,梯形ABMD和△DME,在Rt△ADC中:DC=,∵CF是△DME的中位线,∴CM=DC=,∵四边形ABMC是平行四边形,∴AB=MC=,BM=AC=a,∴梯形ABMD面积为:(+a)××=;由AC⊥DC和BE∥AC可证得△DME是直角三角形,其面积为:××a=,∴四边形ABED的面积为+=.本题结合三角形的有关知识综合考查了平行四边形的性质,解题的关键是理解中位线的定义,会用勾股定理求解直角三角形,会计算一些简单的四边形的面积.16、(1)2;(2)见解析;(3)﹣1≤x<﹣2或2<x≤1【解析】

(1)依据在y=|x|+1中,令x=﹣2,则y=2,可得m的值;(2)将图中的各点用平滑的曲线连接,即可画出该函数的图象;(3)依据函数图象,即可得到当2<y≤3时,x的取值范围.【详解】(1)在y=|x|+1中,令x=﹣2,则y=2,∴m=2,故答案为2;(2)如图所示:(3)由图可得,当2<y≤3时,x的取值范围为﹣1≤x<﹣2或2<x≤1.故答案为﹣1≤x<﹣2或2<x≤1.本题考查了一次函数的图象与性质以及一次函数图象上点的坐标特征,根据题意画出图形,利用数形结合思想是解题的关键.17、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.【解析】

(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【详解】(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20-a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.18、2.3m【解析】

根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.【详解】在Rt△ABD中,∠BAD=18°,AB=9m,∴BD=AB×tan18°≈2.92m,∴CD=BD-BC=2.92-0.5=2.42m,在Rt△CDE中,∠CDE=72°,CD≈2.42m,∴CE=CD×sin72°≈2.3m.答:CE的高为2.3m.本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】

作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.【详解】作CD⊥AB于D,

则∠ADC=∠BDC=90°,△ABC的面积=AB⋅CD=×10×CD=30,

解得:CD=6,

∴AD==8m;

分两种情况:

①等腰△ABC为锐角三角形时,如图1所示:

BD=AB−AD=2m,

∴BC==;

②等腰△ABC为钝角三角形时,如图2所示:

BD=AB+AD=18m,

∴BC==;

综上所述:BC的长为或.

故答案为:或.本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论等腰三角形.20、对角线互相平分的四边形是平行四边形【解析】试题解析:∵O是AC边的中点,∴OA=OC,∵OD=OB,∴四边形ABCD是平行四边形,则依据:对角线互相平分的四边形是平行四边形.故答案为:对角线互相平分的四边形是平行四边形.21、-8【解析】

把点A(a,b)分别代入一次函数y=x-1与反比例函数,求出a-b与ab的值,代入代数式进行计算即可.【详解】∵点A(a,b)是一次函数y=x+2与反比例函数的交点,∴b=a+2,,即a−b=-2,ab=4,∴原式=ab(a−b)=4×(-2)=-8.反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.22、2.【解析】

由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC的长,即可求AE的长.【详解】如图:∵折叠,∴∠EAD=∠FAD,DE=DF,∴∠DFE=∠DEF;∵△AEF是等边三角形,∴∠EAF=∠AEF=60°,∴∠EAD=∠FAD=30°;在Rt△ACD中,AC=6,∠CAD=30°,∴CD=2;∵FD⊥BC,AC⊥BC,∴AC∥DF,∴∠AEF=∠EFD=60°,∴∠FED=60°;∵∠AEF+∠DEC+∠DEF=110°,∴∠DEC=60°;∵在Rt△DEC中,∠DEC=60°,CD=2,∴EC=2;∵AE=AC﹣EC,∴AE=6﹣2=2;故答案为:2.本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED度数是本题的关键.23、120°【解析】

根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.二、解答题(本大题共3个小题,共30分)24、(1);;(2);(3)M

点坐标为,,,.【解析】

用待定系数法可求直线的解析式,平移可得直线的解析式由四边形DCBP是平行四边形,可得,,根据两点公式可求P的坐标.分,,三种情况讨论,根据勾股定理可求M的坐标.【详解】设直线的解析式为,且过,,,解得:,,解析式,把直线沿x轴的负方向平移6个单位得到直线,直线的解析式;设,直线与y轴交于D点,交x轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论