版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知x=-1是一元二次方程x2+px+q=0的一个根,则代数式p-q的值是()A.1 B.-1 C.2 D.-22、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是()A.AB∥CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD=BC D.AC与BD互相平分3、(4分)若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠84、(4分)一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是()A. B. C. D.5、(4分)若一个正多边形的一个外角是30°,则这个正多边形的边数是()A.9 B.10 C.11 D.126、(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)
35
39
42
44
45
48
50
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7、(4分)如图,在R△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从点B出发,沿B→C→A运动,如图(1)所示,设,点P运动的路程为,若与之间的函数图象如图(2)所示,则的值为A.3 B.4 C.5 D.68、(4分)矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为()A.3 B. C.2或3 D.3或二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.10、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.11、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________12、(4分)若关于x的方程产生增根,那么m的值是______.13、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与DO相反的向量______;(2)填空:AO+BC+OB=______;(3)求作:OC+AB(保留作图痕迹,不要求写作法).15、(8分)已知一次函数的图象经过点与点.(1)求这个一次函数的解析式;(2)若点和点在此一次函数的图象上,比较,的大小.16、(8分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.17、(10分)在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG=CE.18、(10分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)1号2号3号4号5号平均数方差八(1)班13914815016015315046.8八(5)班150139145147169150103.2根据以上信息,解答下列问题:(1)求两班的优秀率及两班数据的中位数;(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别为AB、AC、BC的中点,若CD=8,则EF=_________.20、(4分)若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.21、(4分)若分式的值为0,则x的值为_______.22、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.23、(4分)顺次连结任意四边形各边中点所得到的四边形一定是.二、解答题(本大题共3个小题,共30分)24、(8分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).25、(10分)一组数据:1,1,2,5,x的平均数是1.(1)求x的值;(2)求这组数据的方差.26、(12分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.(1)判断四边形的形状,并说明理由,(2)若,求的长,
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.【详解】解:∵x=-1是一元二次方程x2+px+q=0的一个根,∴(-1)2+p×(-1)+q=0,即∴p-q=1.故选A.本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.2、A【解析】
根据平行四边形的判定方法依次判定各项后即可解答.【详解】选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.故选A.本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.3、C【解析】
原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.4、B【解析】
设平均每次降价的百分比是x,则第一次降价后的价格为60×(1-x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1-x)×(1-x)元,从而列出方程,然后求解即可.【详解】解:设平均每次降价的百分比是,根据题意得:,解得:,(不合题意,舍去),答:平均每次降价的百分比是10%;故选:B.本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、D【解析】
首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.【详解】根据题意正多边形的一个外角是30°它的内角为:所以根据正多边形的内角公式可得:可得故选D.本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.6、D【解析】试题解析:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.1.故错误的为D.故选D.7、A【解析】
根据已知条件和图象可以得到BC、AC的长度,当x=4时,点P与点C重合,此时△DPC的面积等于△ABC面积的一半,从而可以求出y的最大值,即为a的值.【详解】根据题意可得,BC=4,AC=7−4=3,当x=4时,点P与点C重合,∵∠ACB=90°,点D为AB的中点,∴S△BDP=S△ABC,∴y=××3×4=3,即a的值为3,故选:A.本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解决问题.8、D【解析】
当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=,∴BE=;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为或1.故选D.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.二、填空题(本大题共5个小题,每小题4分,共20分)9、5.1×10-1【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000051=5.1×10-1.故答案为:5.1×10-1.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、3【解析】
∵BE平分∠ABC,∴∠ABE=∠CBE,又∵∠ABE和∠CEB为内错角,∴∠ABE=∠CEB,∴∠CEB=∠CBE,∴CE=BC=AD=6㎝,∵DC=AB=9㎝,∴DE=3cm.11、;【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.【详解】观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.故答案为本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.12、1【解析】
分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.【详解】分式方程去分母得:x−1=m+2x−4,由题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故答案为:1.此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.13、(-1,3)【解析】
直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,∴两直线的交点即为方程组的解,故交点坐标为(-1,3).故答案为(-1,3).三、解答题(本大题共5个小题,共48分)14、(1)OD,BO;(2)AC;(3)见解析.【解析】
(1)观察图形直接得到结果;(2)由AO+OB=AB,AB+BC=AC即可得到答案;(3)根据平行四边形法则即可求解.【详解】解:(1)与相反的向量有,.(2)∵+=,+=,∴++=.(3)如图,作平行四边形OBEC,连接AE,即为所求.故答案为(1)OD,BO;(2)AC;(3)见解析.本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.15、(1)y=2x-1;(2)m<n.【解析】
(1)设一次函数解析式为y=kx+b,将已知两点坐标代入得到方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式;(2)利用一次函数图象的增减性进行解答.【详解】(1)设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图象经过点(3,5)与(-4,-9),∴,解得,∴这个函数的解析式为y=2x-1;(2)∵k=2>0,∴y随x的增大而增大.∵a<a+1,∴m<n.本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.16、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.【解析】根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到17、(1);(2)证明见解析.【解析】
(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.【详解】(1)解:∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90°,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG==;(2)证明:如图,过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90°,∴∠MCG=∠ECF,在△MCG和△ECF中,,∴△MCG≌△ECF(SAS),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=CE,又∵ME=MG+EG=EF+EG,∴EF+EG=CE.本题考查了正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形,熟练掌握性质定理是解题的关键.18、(1)八(1)班的优秀率为,八(2)班的优秀率为八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖【解析】
(1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;(2)直接根据表中信息,分析即可.【详解】(1)八(1)班的优秀率为,八(2)班的优秀率为∵八(1)班的成绩由低到高排列为139,148,150,153,160八(2)班的成绩由低到高排列为139,145,147,150,169∴八(1),八(2)班的中位数分别为150,147(2)八(1)班获冠军奖.理由:从优秀率看,八(1)班的优秀人数多;从中位数来看,八(1)班较大,一般水平较高;从方差来看,八(1)班的成绩也比八(2)班的稳定∴八(1)班获冠军奖.此题主要考查数据的处理,熟练掌握,即可解题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.【详解】解:∵∠ACB=90°,点D为AB的中点,∴AB=2CD=16,∵点E、F分别为AC、BC的中点,∴EF=12AB=1故答案为:1.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.20、0(答案不唯一)【解析】
利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21、-1【解析】
根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-1.
故答案为:-1.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.22、1+2【解析】
取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=AB=2.同理ON=2.∵正方形DGFE,N为DE中点,DE=1,∴.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值1+2.故答案为:1+2.此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.23、平行四边形【解析】试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.考点:平行四边形的判定二、解答题(本大题共3个小题,共30分)24、(1)反比例函数关系式:;一次函数关系式:y=1x+1;(1)3;(3)x<-1或0<x<1.【解析】分析:(1)由B点在反比例函数y=上,可求出m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市公共安全服务承包合同
- 蛇皮市场发展预测和趋势分析
- 眼镜挂绳市场发展现状调查及供需格局分析预测报告
- 04版铲车租赁合同:设备租赁及临时施工权
- 2024年度物流服务与仓储合同协议书
- 2024年度智能物流机器人研发与制造合同
- 合同欠债结清承诺书4
- 2024年度旅游服务合同服务项目与价格
- 2024年度建筑工程BIM模型制作与咨询服务合同
- 2024年度物业管理合同:住宅小区的管理与服务
- 能源经济学复习题
- 《神经病学》癫痫-课件
- 《婴幼儿行为观察、记录与评价》习题库(项目五)0 ~ 3 岁婴幼儿社会性发展观察、记录与评价
- 血吸虫病防治知识考试复习题库(含答案)
- 劳动教育知到章节答案智慧树2023年丽水学院
- 中小学课外辅导机构创业计划书
- 2023学年六年级英语核心素养测试题
- 群落的结构++第1课时++群落的物种组成课件 高二上学期生物人教版(2019)选择性必修2
- DBJ15302023年广东省铝合金门窗工程设计、施工及验收规范
- 涉及人血液、尿液标本采集知情同意书模板
- GB/T 9797-2022金属及其他无机覆盖层镍、镍+铬、铜+镍和铜+镍+铬电镀层
评论
0/150
提交评论