河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】_第1页
河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】_第2页
河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】_第3页
河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】_第4页
河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是()A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF2、(4分)反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限3、(4分)一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.104、(4分)化简的结果是()A.2 B. C.4 D.165、(4分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查6、(4分)如图,在平行四边形ABCD中,下列结论不一定成立的是()A.∠A+∠B=180° B.∠A=∠CC.AB=DC D.AC⊥BD7、(4分)关于的分式方程有增根,则的值为A.0 B. C. D.8、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=()A.33° B.80° C.57° D.67°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分解因式:.10、(4分)有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.11、(4分)对于反比例函数,当时,其对应的值、、的大小关系是______.(用“”连接)12、(4分)不等式组恰有两个整数解,则实数的取值范围是______.13、(4分)一次函数y=-4x-5的图象不经过第_____________象限.三、解答题(本大题共5个小题,共48分)14、(12分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.15、(8分)下面是小东设计的“作矩形”的尺规作图过程,已知:求作:矩形作法:如图,①作线段的垂直平分线角交于点;②连接并延长,在延长线上截取③连接所以四边形即为所求作的矩形根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形:(保留作图痕迹)(2)完成下边的证明:证明:,,四边形是平行四边形()(填推理的依据)四边形是矩形()(填推理的依据)16、(8分)2018长春国际马拉松赛于2018年5月27日在长春市举行,其中10公里跑起点是长春体育中心,终点是卫星广场.比赛当天赛道上距离起点5km处设置一个饮料站,距离起点7.5km处设置一个食品补给站.小明报名参加了10公里跑项目.为了更好的完成比赛,小明在比赛前进行了一次模拟跑,从起点出发,沿赛道跑向终点,小明匀速跑完前半程后,将速度提高了,继续匀速跑完后半程.小明与终点之间的路程与时间之间的函数图象如图所示,根据图中信息,完成以下问题.(1公里=1千米)(1)小明从起点匀速跑到饮料站的速度为_______,小明跑完全程所用时间为________;(2)求小明从饮料站跑到终点的过程中与之间的函数关系式;(3)求小明从起点跑到食品补给站所用时间.17、(10分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).(1)求此直线和双曲线的表达式;(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.18、(10分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影新多边形内角和比原多边形的内角和增加了.新多边形的内角和与原多边形的内角和相等.新多边形的内角和比原多边形的内角和减少了.将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:a2-4=________.20、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。21、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性_________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).22、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.23、(4分)一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.(1)若点的坐标是,则,;(2)设直线与轴分别交于点,求证:是等腰三角形;(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.25、(10分)某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h(cm)与燃烧的时间x(h)之间是一次函数关系,h与x的一组对应数值如表所示:燃烧的时间x(h)…3456…剩余的长度h(cm)…210200190180…(1)写出“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式,并解释函数表达式中x的系数及常数项的实际意义;(2)通过计算说明当“香篆”剩余的长度为125cm时的时刻.26、(12分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;【详解】解:当AB=BC时,四边形DBFE是菱形;理由:∵点D、E、F分别是边AB、AC、BC的中点,∴DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵DE=BC,EF=AB,∴DE=EF,∴四边形DBFE是菱形.故B正确,不符合题意,当BE平分∠ABC时,∴∠ABE=∠EBC∵DE∥BC,∴∠CBE=∠DEB∴∠ABE=∠DEB∴BD=DE∴四边形DBFE是菱形,故C正确,不符合题意,当EF=FC,∵BF=FC∴EF=BF,∴四边形DBFE是菱形,故D正确,不符合题意,故选A.本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.2、D【解析】

根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【详解】∵y=-6x∴函数图象过二、四象限.故选D.本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.3、B【解析】

根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【详解】解:n=360°÷45°=1.故选:B.本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.4、A【解析】

根据算术平方根的定义计算即可.【详解】∵11=4,∴4的算术平方根是1,即=1.故选:A.本题考查算术平方根的概念:一般地,如果一个正数x的平方等于a,即x1=a,那么这个正数x叫做a的算术平方根.记为.5、D【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.6、D【解析】

根据平行四边形的性质得到AD//BC、∠A=∠C、AB=DC从而进行判断.【详解】因为四边形ABCD是平行四边形,所以AD//BC、∠A=∠C、AB=DC,(故B、C选项正确,不符合题意)所以∠A+∠B=180°,(故A选项正确,不符合题意).故选:D.考查了平行四边形的性质,解题关键是熟记平行四边形的性质.7、D【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.详解:方程两边都乘(x+2),得:x-5=m,∵原方程有增根,∴最简公分母:x+2=0,解得x=-2,当x=-2时,m=-1.故选D.点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8、A【解析】

根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.【详解】解:在△ABC中,∠A=33°,

∴由平移中对应角相等,得∠EDF=∠A=33°.

故选:A.此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.10、5.4×【解析】

绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000054这个数用科学记数法表示为5.4×10故答案为:5.4×考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.11、【解析】

根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,再根据,即可比较、、的大小关系.【详解】解:根据反比例函数的性质,图形位于第一、三象限,并且随着的增大而减小,而,则,而,则,故答案为.本题考查反比例函数,难度不大,是中考的常考知识点,熟记反比例函数的性质是顺利解题的关键.12、【解析】

首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【详解】解:对于,解不等式①得:,解不等式②得:,因为原不等式组有解,所以其解集为,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a应满足,解得.故答案为.本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.13、一【解析】

根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.三、解答题(本大题共5个小题,共48分)14、答案见解析【解析】

首先连接AC交EF于点O,由平行四边形ABCD的性质,可知OA=OC,OB=OD,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.【详解】证明:连接AC交EF于点O;∵平行四边形ABCD∴OA=OC,OB=OD∵BE=DF,∴OE=OF∴四边形AECF是平行四边形.此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.15、(1)见解析;(2)OC,对角线互相平分的四边形是平行四边形;一角为直角的平行四边形是矩形.【解析】

(1)根据要求作出图形即可.(2)根据对角线互相平分得到四边形ABCD是平行四边形,因为∠ABC=90°,且四边形ABCD是平行四边形,则可判定四边形ABCD矩形.【详解】解:(1)如图,矩形ABCD即为所求.(2)∵OA=OC,OD=OB,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,四边形ABCD是矩形(有一个角是直角的平行四边形是矩形)故答案为:OC,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.本题考查作图-复杂作图、平行四边形的判定、矩形的判定等知识,解题的关键是熟练掌握尺规作图、平行四边形的判定、矩形的判定.16、(1),1.2;(2)S=﹣10t+12(0.7≤t≤1.2);(3)0.95【解析】

(1)根据图象可知小明从起点匀速跑到饮料站用时0.7小时,根据“速度=路程÷时间”即可解答;(2)根据题意和函数图象中的数据可以求得小明从饮料站跑到终点的过程中S与t之间的函数表达式;(3)根据题意,可以列出关于a的不等式,从而可以求得a的取值范围,本题得以解决.【详解】解:(1)小明从起点匀速跑到饮料站的速度为:km/h,小明跑完全程所用时间为:(小时);故答案为:;1.2;(2)设明张从饮料站跑到终点的过程中S与t之间的函数表达式为S=kt+b,,解得,即小明从饮料站跑到终点的过程中S与t之间的函数表达式为S=﹣10t+12(0.7≤t≤1.2);(3)10﹣7.5=2.5,∴将S=2.5代入S=﹣10t+12,得2.5=﹣10t+12,得t=0.95,答:小明从起点跑到食品补给站所用的时间为0.95小时.本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.17、(1)直线的解析式为y=2x+2,反比例函数的解析式为y=;(2)M(﹣3,0)或(2,0).【解析】

(1)利用待定系数法即可解决问题;

(2)设M(a,0),表示出P(a,2a+2),Q(a,),根据PQ=2QD,列方程|2a+2-|=|2×|,解得a=2,a=-3,即可得到结果.【详解】(1)∵y=2x+m与(n≠0)交于A(1,4),∴,∴,∴直线的解析式为y=2x+2,反比例函数的解析式为.(2)设M(a,0),∵l∥y轴,∴P(a,2a+2),Q(a,),∵PQ=2QM,∴|2a+2﹣|=|2×|,解得:a=2或a=﹣3,∴M(﹣3,0)或(2,0).本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.18、(1)作图见解析;(2)15,16或1.

【解析】

(1)①过相邻两边上的点作出直线即可求解;②过一个顶点和相邻边上的点作出直线即可求解;③过相邻两边非公共顶点作出直线即可求解;(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.【详解】如图所示:设新多边形的边数为n,则,解得,若截去一个角后边数增加1,则原多边形边数为15,若截去一个角后边数不变,则原多边形边数为16,若截去一个角后边数减少1,则原多边形边数为1,故原多边形的边数可以为15,16或1.本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.一、填空题(本大题共5个小题,每小题4分,共20分)19、(a+2)(a-2);【解析】

有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).考点:因式分解-运用公式法.20、9【解析】

根据三角形中位线定理求出DE、DF、EF即可解决问题.【详解】解:∵点D、E、F分别是边AB、AC、BC的中点∴∴∴△DEF的周长是:本题考查了三角形中位线,熟练掌握三角形中位线定理是解题的关键.21、小于【解析】

根据图形中的数据即可解答本题.【详解】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,

∴凸面向上”的可能性小于“凹面向上”的可能性.,

故答案为:小于.本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.22、AB=2BC.【解析】

先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.【详解】解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.23、x≥﹣1【解析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b≥kx解集.【详解】两个条直线的交点坐标为(−1,2),且当x≥−1时,直线y=kx在y=ax+b直线的下方,故不等式ax+b≥kx的解集为x≥−1.故答案为x≥−1.本题考查了一次函数与一元一次不等式的知识点,解题的关键是根据图象可知一次函数与一元一次不等式的增减性.二、解答题(本大题共3个小题,共30分)24、(1),.(2)详见解析;(3),理由详见解析.【解析】

(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.【详解】(1)∵点P(1,4)在反比例函数图象上,∴k=4×1=4,∵B点横坐标为4,∴B(4,1),连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,则D(4,4),∴PP′=1,P′O=4,OB′=4,BB′=1,∴BD=4-1=3,PD=4-1=3,∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,∵A、B关于原点对称,∴OA=OB,∴S△PAO=S△PBO,∴S△PAB=2S△PBO=15;(2)∵点P是第一象限内反比例函数图象上的动点,且在直线AB的上方,∴可设点P坐标为(m,),且可知A(-4,-1),设直线PA解析式为y=k′x+b,把A、P坐标代入可得,解得,∴直线PA解析式为,令y=0可求得x=m-4,∴M(m-4,0),同理可求得直线PB解析式为,令y=0可求得x=m+4,∴N(m+4,0),作PG⊥x轴于点G,如图2,则G(m,0),∴MG=m-(m-4)=4,NG=m+4-m=4,∴MG=NG,即G为MN中点,∴PG垂直平分MN,∴PM=PN,即△PMN是等腰三角形;(3)∠PAQ=∠PBQ,理由如下:连接QA交x轴于M′,连接QB并延长交x轴于点N′,如图3,由(2)可得PM′=PN′,即∠QM′O=∠QN′O,∴∠MM′A=∠QN′O,由(2)知∠PMN=∠PNM,∴∠PMN-∠MM′A=∠PNM-∠QN′O,∴∠PAQ=∠NBN′,又∠NBN′=∠PBQ,∴∠PAQ=∠PBQ.本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、垂直平分线的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论