版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页海南省海口市2024年九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形 B.对角线相等的四边形是矩形C.对角线互相垂直且相等的四边形是正方形 D.对角线互相垂直的四边形是菱形2、(4分)顺次连接四边形各边的中点,所成的四边形必定是()A.等腰梯形 B.直角梯形 C.矩形 D.平行四边形3、(4分)不等式组的解集是()A. B. C. D.4、(4分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补5、(4分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. B. C. D.6、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20C.15 D.257、(4分)如图,矩形在平面直角坐标系中,,,把矩形沿直线对折使点落在点处,直线与的交点分别为,点在轴上,点在坐标平面内,若四边形是菱形,则菱形的面积是()A. B. C. D.8、(4分)将一张矩形纸片按照如图所示的方式折叠,然后沿虚线AB将阴影部分剪下,再将剪下的阴影部分纸片展开,所得到的平面图形是()A.直角三角形 B.等腰三角形 C.矩形 D.菱形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不等式﹣2x>﹣4的正整数解为_____.10、(4分)在平面直角坐标系中,正比例函数与反比例函数的图象交于点,则_________.11、(4分)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式.12、(4分)关于的方程是一元二次方程,那么的取值范围是_______.13、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)15、(8分)如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.16、(8分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.17、(10分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.求证:四边形BMDN是平行四边形.18、(10分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数的图象过点,且y随x的增大而减小,则m=_______.20、(4分)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.21、(4分)数据﹣2、﹣1、0、1、2的方差是_____.22、(4分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为______.23、(4分)已知是一元二次方程的一根,则该方程的另一个根为_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.(1)若,求证:平分;(2)若点是边上的中点,求证:25、(10分)(1)已知,求的值;(2)解方程:.26、(12分)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、BE,且AC和BE相交于点O.(1)求证:四边形ABCE是菱形;(2)如图2,P是线段BC上一动点(不与B.C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P、Q、R为顶点的三角形与以点B.C.O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【详解】A、对角线互相平分的四边形是平行四边形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线相等且互相垂直平分的四边形是正方形,所以C选项错误;D、对角线互相垂直的平行四边形是菱形,所以D选项错误.故选A.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2、D【解析】
根据题意,画出图形,连接AC、BD,根据一组对边平行且相等的四边形是平行四边形进行判定.【详解】解:四边形ABCD的各边中点依次为E、F、H、G,∴EF为△ABD的中位线,GH为△BCD的中位线,∴EF∥BD,且EF=BD,GH∥BD,且GH=BD,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形.故选:D.此题考查平行四边形的判定和三角形中位线定理.解题的关键是正确画出图形,注意利用图形求解.3、A【解析】
分别求出各不等式的解集,再求出其公共解集即可.【详解】解:
解不等式①得:x⩽2,
解不等式②得:x>−3,
∴不等式组的解集为:−3<x⩽2,
故选:A.本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、A【解析】
菱形的对角线互相垂直平分,矩形的对角线相等互相平分.则菱形具有而矩形不一定具有的性质是:对角线互相垂直故选A5、C【解析】
根据函数的性质判断系数k>1,然后依次把每个点的坐标代入函数解析式,求出k的值,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>1.A.把点(﹣5,3)代入y=kx﹣1得到:k1,不符合题意;B.把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<1,不符合题意;C.把点(2,2)代入y=kx﹣1得到:k1,符合题意;D.把点(5,﹣1)代入y=kx﹣1得到:k=1,不符合题意.故选C.本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>1是解题的关键.6、C【解析】
根据平行四边形的性质求解即可.【详解】∵四边形ABCD是平行四边形∴∵AC+BD=20∴∴△AOB的周长故答案为:C.本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.7、C【解析】
如图,连接AD,根据勾股定理先求出OC的长,然后根据折叠的性质以及勾股定理求出AD、DF的长,继而作出符合题意的菱形,分别求出菱形的两条对角线长,然后根据菱形的面积等于对角线积的一半进行求解即可.【详解】如图,连接AD,∵∠AOC=90°,AC=5,AO=3,∴CO==4,∵把矩形沿直线对折使点落在点处,∴∠AFD=90°,AD=CD,CF=AF=,设AD=CD=m,则OD=4-m,在Rt△AOD中,AD2=AO2+OD2,∴m2=32+(4-m)2,∴m=,即AD=,∴DF===,如图,过点F作FH⊥OC,垂足为H,延长FH至点N,使HN=HF,在HC上截取HM=HD,则四边形MFDN即为符合条件的菱形,由题意可知FH=,∴FN=2FH=3,DH=,∴DM=2DH=,∴S菱形MFDN=,故选C.本题考查了折叠的性质,菱形的判定与性质,勾股定理等知识,综合性质较强,有一定的难度,正确添加辅助线,画出符合题意的菱形是解题的关键.8、D【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.【详解】解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题(本大题共5个小题,每小题4分,共20分)9、x=1.【解析】
将不等式两边同时除以-2,即可解题【详解】∵﹣2x>-4∴x<2∴正整数解为:x=1故答案为x=1.本题考查解不等式,掌握不等式的基本性质即可解题.10、【解析】
把代入可得:解得得,再把代入,即,解得.【详解】解:把代入可得:解得,∴∵点也在图象上,把代入,即,解得.故答案为:8本题考查了一次函数和反比例函数,掌握待定系数法求解析式是关键.11、y=3x.【解析】试题分析:设y=kx,然后根据题意列出关系式.依题意有:x=36(kPa)时,y=108(g/m3),∴k=3,故函数关系式为y=3x.考点:根据实际问题列一次函数关系式.12、【解析】
根据一元二次方程的概念及一般形式:即可求出答案.【详解】解:∵关于的方程是一元二次方程,∴二次项系数,解得;故答案为.本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.13、1或【解析】
因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.【详解】解:①当12为斜边时,则第三边==;
②当12是直角边时,第三边==1.
故答案为:1或.本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.15、证明见解析.【解析】
由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【详解】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.16、见解析【解析】(1)根据平行四边形的性质可得AO=CO,BO=DO,再由条件点E、F分别为BO、DO的中点,可得EO=OF,进而可判定四边形AECF是平行四边形;(2)由等式的性质可得EO=FO,再加上条件AO=CO可判定四边形AECF是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E、F分别为BO、DO的中点,∴EO=OF,∵AO=CO,∴四边形AECF是平行四边形;(2)解:结论仍然成立,理由:∵BE=DF,BO=DO,∴EO=FO,∵AO=CO,∴四边形AECF是平行四边形.17、证明见解析【解析】
由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.【详解】证明:∵BM⊥AC,DN⊥AC,
∴∠DNA=∠BMC=90°,
∴DN∥BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAN=∠BCM,
∴△ADN≌△CBM,
∴DN=BM,
∴四边形BMDN是平行四边形.本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.18、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.【解析】
(1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.(2)根据题意分别列出函数关系式.(3)由、、列式作出判断.【详解】解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:,解得.答:A,B两种品牌计算机的单价分别为30元,32元.(2)由题意可知:,即.当时,;当时,,即.(3)当购买数量超过5个时,.①当时,,解得,即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;②当时,,解得,即当购买数量为30个时,购买两种品牌的计算机花费相同;③当时,,解得,即当购买数量超过30个时,购买B品牌的计算机更合算.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据一次函数的图像过点,可以求得m的值,由y随x的增大而减小,可以得到m<0,从而可以确定m的值.【详解】∵一次函数的图像过点,∴,解得:或,∵y随x的增大而减小,∴,∴,故答案为:.本题考查一次函数图像上点的坐标特征、一次函数的性质,解答此类问题的关键是明确一次函数的性质,利用一次函数的性质解答问题.20、y=x【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,易知OB=1,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,如图所示.∵正方形的边长为1,∴OB=1.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两部分面积分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,∴点A的坐标为(,1).设直线l的解析式为y=kx,∵点A(,1)在直线l上,∴1=k,解得:k=,∴直线l解析式为y=x.故答案为:y=x.本题考查了待定系数法求一次函数解析式、正方形的性质以及三角形的面积,利用三角形的面积公式和已知条件求出A的坐标是解题的关键.21、2【解析】
根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【详解】由题意可得,这组数据的平均数是:x==0,∴这组数据的方差是:,故答案为:2.此题考查方差,解题关键在于掌握运算法则22、y=【解析】
由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(-3,),AD∥x轴,即可得到B(-3,),C(-1,),D(-1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(-3+m)=(-1+m),即可求得结果.【详解】解:∵四边形ABCD是矩形,∴AB=CD=1,BC=AD=2,∵A(-3,),AD∥x轴,∴B(-3,),C(-1,),D(-1,);∵将矩形ABCD向右平移m个单位,∴A′(-3+m,),C(-1+m,),∵点A′,C′在反比例函数y=(x>0)的图象上,∴(-3+m)=(-1+m),解得:m=4,∴A′(1,),∴k=,∴反比例函数的解析式为:y=.故答案为y=.本题考查了矩形的性质,图形的变换-平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.23、-2【解析】
由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.【详解】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)见解析.【解析】
(1)由四边形是平行四边形,,易证得,又由,可证得,即可证得平分;(2)延长,交的延长线于点,易证得,又由,可得是的斜边上的中线,继而证得结论.【详解】证明:(1)四边形是平行四边形,,,,,,,,在和中,,,,平分;(2)如图,延长,交的延长线于点,四边形是平行四边形,,,点是边上的中点,,在和中,,,,,,,.此题考查了平行四边形的性质、等腰三角形的性质、直角三角形的性质以及全等三角形的判定与性质.注意掌握
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国电子工业版初中信息技术第一册第2单元2.3活动3《了解电子邮件传输协议》教学实录
- 临沂房产借款合同范例
- 2025年南充a2驾驶证货运从业资格证模拟考试
- 2025年三亚c1货运从业资格证模拟考试题
- 特殊工种应聘合同范例
- 月饼券订购合同范例
- 买房中介返现合同范例
- 店铺铺面合同范例
- 产品保本合同范例
- 唐山职业技术学院《工程经济学与管理》2023-2024学年第一学期期末试卷
- 在线网课知慧《中学政治教学论(渭南师范学院)》单元测试考核答案
- 国开2024年《机械设计基础》形考任务1-4答案
- 公路工程设计设计的质量保证措施、进度保证措施
- GB/T 43786-2024音频、视频和信息技术设备生产过程中的例行电气安全试验
- XXX加油站安全验收评价报告
- 超市经营管理方案
- 开源情报行业分析
- 物业企业安全风险管控责任清单
- 4.5.1 函数的零点与方程的解(九大题型)(解析版)
- 2024年江西生物科技职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 柜长管理方案
评论
0/150
提交评论