广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】_第1页
广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】_第2页
广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】_第3页
广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】_第4页
广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广西柳州市柳北区2024-2025学年九年级数学第一学期开学调研试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2102、(4分)如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为()A.1 B.2 C.3 D.43、(4分)如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD4、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有()A.1个 B.2个 C.3个 D.4个5、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分6、(4分)使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠37、(4分)用配方法解一元二次方程时,下列变形正确的是()A. B.C. D.8、(4分)下列事件中,是必然事件的是()A.3天内下雨 B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同 D.a抛掷1个均匀的骰子,出现4点向上二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=12BC,若EF=13,则线段AB的长为_____10、(4分)若点在轴上,则点的坐标为__________.11、(4分)如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则___________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为_________.12、(4分)用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.13、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形中,,,.(1)求证:;(2)若,,,分别是,,,的中点,求证:线段与线段互相平分.15、(8分)如图,已知.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题:(1)作的平分线、交于点;(2)作线段的垂直平分线,交于点,交于点,连接;(3)写出你所作出的图形中的所有等腰三角形.16、(8分)如图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.17、(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18、(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某小组7名同学的英语口试成绩(满分30分)依次为,,,,,,,则这组数据的中位数是_______.20、(4分)如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上.若反比例函数y=kx的图像经过点C,则k的值为21、(4分)把二次根式化成最简二次根式得到的结果是______.22、(4分)如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.23、(4分)方程在实数范围内的解是_____.二、解答题(本大题共3个小题,共30分)24、(8分)某校学生会干部对校学生会倡导的“牵手特殊教育”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).己知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”(3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.25、(10分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货;方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.26、(12分)如图,菱形的对角线、相交于点,,,连接.(1)求证:;(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.2、B【解析】

根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.3、B【解析】

由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.4、D【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由题意可得:甲步行速度==60米/分;故①符合题意;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80∴乙的速度为80米/分;∴乙走完全程的时间==30分,故②符合题意;由图可得:乙追上甲的时间为(16﹣4)=12分;故③符合题意;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④符合题意;故正确的结论为:①②③④,故选:D.本题考查了一次函数的应用,明确题意,读懂函数图像,是解题的关键.5、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6、D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得解得,x≥2且x≠1.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件7、A【解析】

根据完全平方公式即可进行求解.【详解】∵=0∴方程化为故选A.此题主要考查配方法,解题的关键是熟知完全平方公式的应用.8、C【解析】

根据随机事件和必然事件的定义分别进行判断.【详解】A.3天内会下雨为随机事件,所以A选项错误;B.打开电视机,正在播放广告,是随机事件,所以B选项错误;C.367人中至少有2人公历生日相同是必然事件,所以C选项正确;D.a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.故选C.此题考查随机事件,解题关键在于掌握其定义.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据三角形中位线定理得到DE=12BC,DE//BC【详解】解:∵点D,E分别是边AB,AC的中点,∴DE=12BC∵CF=1∴DE=CF,又DE//CF,∴四边形DEFC为平行四边形,∴CD=EF=13,∵∠ACB=90°,点D是边AB的中点,∴AB=2CD=26,故答案为:1.本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.10、【解析】

根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.【详解】解:因为点P(m+1,m-2)在x轴上,

所以m-2=1,解得m=2,

当m=2时,点P的坐标为(3,1),

故答案为(3,1).本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.11、462.1【解析】

先利用三角形外角性质得∠ACA′=∠A+∠B=67°,再根据旋转的性质得∠BCB′=∠ACA′=67°,然后利用平角的定义计算∠ACB′的度数;由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长..【详解】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴∠BCB′=∠ACA′=67°,∴∠ACB′=180°-67°-67°=46°.∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x,∵EB=AB-AE=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=2.1,∴FM=2.1.故答案为:46;2.1.本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理的综合应用.解题的关键是掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12、3y2+3y﹣2=1【解析】

设,则原方程化为3y﹣+3=1,,再整理即可.【详解】﹣+3=1,设=y,则原方程化为:3y﹣+3=1,即3y2+3y﹣2=1,故答案为:3y2+3y﹣2=1.本题考查了解分式方程,能够正确换元是解此题的关键.13、1【解析】

结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.【详解】解:∵甲出发到返回用时1小时,返回后速度不变,∴返回到A地的时刻为x=2,此时y=120,∴乙的速度为60千米/时,设甲重新出发后的速度为v千米/时,列得方程:(5﹣2)(v﹣60)=120,解得:v=100,设甲在第t小时到达B地,列得方程:100(t﹣2)=10解得:t=6,∴此时乙行驶的路程为:60×6=360(千米),乙离B地距离为:10﹣360=1(千米).故答案为:1.本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析【解析】

(1)过点D作DM∥AC交BC的延长线于点M,由平行四边形的性质易得AC=DM=DB,∠DBC=∠M=∠ACB,由全等三角形判定定理及性质得出结论;

(2)连接EH,FH,FG,EG,E,F,G,H分别是AD,BC,DB,AC的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得□HFGE为菱形,易得EF与GH互相垂直平分.【详解】解:(1)证明:(1)过点D作DM∥AC交BC的延长线于点M,如图1,

∵AD∥CB,

∴四边形ADMC为平行四边形,

∴AC=DM=DB,∠DBC=∠M=∠ACB,

在△ACB和△DBC中,,∴△ACB≌△DBC(SAS),

∴AB=DC;(2)连接EH,FH,FG,EG,如图2,

∵E,F,G,H分别是AD,BC,DB,AC的中点,

∴GE∥AB,且GE=AB,HF∥AB,且HF=AB,∴GE∥HF,GE=HF,∴四边形HFGE为平行四边形,

由(1)知,AB=DC,

∴GE=HE,

∴□HFGE为菱形,

∴EF与GH互相垂直平分.本题主要考查了平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解答此题的关键.15、(1)见解析;(2)见解析;(3)【解析】

(1)利用尺规作出∠ABC的角平分线即可.(2)利用尺规作出线段BD的垂直平分线即可.(3)根据等腰三角形的定义判断即可.【详解】(1)射线BD即为所求.(2)直线EF即为所求.(3)△BDE,△BDF,△BEF是等腰三角形.本题考查作图-复杂作图,线段的垂直平分线,角平分线的定义等知识,解题的关键是熟练掌握基本知识.16、(1)作图解析;(2)证明见解析.【解析】

(1)根据题目要求画出图形即可.(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.【详解】(1)如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC∵BC=CE,∴AD=CE∵AD∥BC,∴∠DAF=∠CEF在△ADF和△ECF中,∵,∴△ADF≌△ECF(AAS)本题主要考查尺规作图以及全等三角形的证明、平行四边形的性质,熟练掌握全等三角形证明方法是解题关键.17、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】

(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.18、(1)③④;(2)详见解析;(3)小明的说法正确.【解析】

(1)由特殊四边形的性质,可知菱形和正方形的对角线互相垂直;(2)首先根据三角形中位线定理和平行四边形的判定定理证明四边形EFGH是平行四边形,然后再证明HG⊥HE即可;(3)由S四边形【详解】答:(1)③④(2)证明:∵H、G分别是AD、CD∵E、F分别是AB、CB∴HG∥EF,HG=EF.∴四边形EFGH是平行四边形∵E、H分别是∴EH∥BD∵四边形ABCD是“正交四边形”∴AC⊥BD∴HG⊥HE∴四边形EFGH是矩形(3)答:小明的说法正确.证明:S=此题考查中点四边形,矩形的判定,解题关键在于得出HG⊥HE.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

对于中位数,先将数据按从小到大的顺序排列,找出最中间的一个数(或最中间的两个数)即可.【详解】这组数据从小到大排列顺序为:23,25,25,1,27,29,30,中间一个数为1,所以这组数据的中位数为1.故答案为:1考核知识点:中位数.理解中位数的定义是关键.20、1【解析】

过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明ΔABO和ΔBCE全等,根据全等三角形对应边相等可得OA=BE=8,CE=OB=6,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【详解】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(-8,0),∴OA=8,∵AB=10,∴OB=10在ΔABO和ΔBCE中,∠OAB=∠CBE∠AOB=∠BEC∴ΔABO≅ΔBCE(AAS),∴OA=BE=8,CE=OB=6,∴OE=BE-OB=8-6=2,∴点C的坐标为(6,2),∵反比例函数y=kx(k≠0)∴k=xy=2×6=12,故答案为1.本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点C的坐标是解题的关键.21、3【解析】

根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.22、【解析】

过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.23、【解析】

由x3+8=0,得x3=-8,所以x=-1.【详解】由x3+8=0,得x3=-8,x=-1,故答案为:x=-1.本题考查了立方根,正确理解立方根的意义是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)20,500;(2)C组的人数为200,图见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论