版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届濮阳市重点中学高二上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27182.已知函数,则的单调递增区间为().A. B.C. D.3.已知等差数列中,、是的两根,则()A B.C. D.4.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.5.已知数列的前n项和为,,,则=()A. B.C. D.6.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.37.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.8.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.149.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形10.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.11.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.212.命题“”的否定是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数f(x)在R上满足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),则a与b的大小关系为________14.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.15.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________16.在等差数列中,前n项和记作,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,讨论函数的单调性;(2)当时,求在区间上的最小值和最大值.18.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程19.(12分)已知命题实数满足不等式,命题实数满足不等式.(1)当时,命题,均为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值21.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.22.(10分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.2、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D3、B【解析】利用韦达定理结合等差中项的性质可求得的值,再结合等差中项的性质可求得结果.【详解】对于方程,,由韦达定理可得,故,则,所以,.故选:B.4、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B5、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D6、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A7、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.8、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.9、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.10、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.11、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A12、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、a>b【解析】构造函数F(x)=xf(x),利用F(x)的单调性求解即可.【详解】设函数F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上为增函数,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案为:a>b.14、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:360015、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:16、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在和上单调递增,在上单调递减.(2)答案见解析.【解析】(1)求解导函数,并求出的两根,得和的解集,从而得函数单调性;(2)由(1)得函数的单调性,从而得最小值,计算,再分类讨论与两种情况下的最大值.【小问1详解】函数定义域为,,时,或,因为,所以,时,或,时,,所以函数在和上单调递增,在上单调递减.【小问2详解】因为,由(1)知,在上单调递减,在上单调递增,所以最小值为,又因为,当时,,此时最小值为,最大值为;当时,,此时最小值为,最大值为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用18、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或19、(1);(2).【解析】(1)分别求出命题,均为真命题时的取值范围,再求交集即可.(2)利用集合间的关系求解即可.【详解】实数满足不等式,即命题实数满足不等式,即(1)当时,命题,均为真命题,则且则实数的取值范围为;(2)若是的充分不必要条件,则是的真子集则且解得故的取值范围为.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.20、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值21、(1);(2).【解析】(1)根据方程为焦点在轴上的椭圆的条件列不等式组,解不等式组求得的取值范围.(2)求得为真命题时的取值范围,结合是的必要不充分条件列不等式组,解不等式组求得的取值范围.【详解】(1)若是真命题,所以,解得,所以的取值范围是.(2)由(1)得,是真命题时,的取值范围是,为真命题时,,所以的取值范围是因为是的必要不充分条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版七年级英语下册教案全册
- 涉密人员工作培训
- 慢性阑尾炎护理常规
- 《快乐学习半边碗》课件
- 《ktv管理制度》课件
- 用电安全专项教育培训
- 工伤私了协议书1000字
- 药店员工聘用合同范本
- 我能干的事社会活动
- 常见心律失常规范诊治及麻醉
- 三阶魔方学习课件
- 三年级语文上册第八单元集体备课+教材解读+解学设计课件
- 部编版二年级语文(上册)课内阅读专项训练题(含答案)
- IEC60335-1-2020中文版-家用和类似用途电器的安全第1部分:通用要求(中文翻译稿)
- 妇幼健康状况分析报告
- 骨科患者的护理评估课件
- 六年级上册数学课件-7.1 百分数的认识 ︳青岛版 (共17张PPT)
- 云教版七年级上册劳技第一章第二节衣服的洗涤与熨烫课件
- 足球竞赛规则裁判法(共56张PPT)
- 监理平行检查记录表格模板
- 水利工程管理单位定岗标准(试点)
评论
0/150
提交评论