云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题含解析_第1页
云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题含解析_第2页
云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题含解析_第3页
云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题含解析_第4页
云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市宣威五中第八中学2025届高二上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.72.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.3.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.24.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.5.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;6.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则7.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.8.函数的值域为()A. B.C. D.9.执行如图所示的程序框图,则输出的A. B.C. D.10.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.11.命题“”的一个充要条件是()A. B.C. D.12.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)14.已知函数,则曲线在点处的切线方程为______.15.圆的圆心坐标为___________;半径为___________.16.已知向量,向量,若,则实数的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,若焦距为4,点P是椭圆上与左、右顶点不重合的点,且的面积最大值.(1)求椭圆的方程;(2)过点的直线交椭圆于点、,且满足(为坐标原点),求直线的方程.18.(12分)已知圆,点(1)若点在圆外部,求实数的取值范围;(2)当时,过点的直线交圆于,两点,求面积的最大值及此时直线l的斜率19.(12分)设命题p:,命题q:关于x的方程无实根.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围20.(12分)已知数列的前n项和为,且(1)求数列的通项公式;(2)若,数列的前n项和为,求的值21.(12分)已知函数(1)求函数的图象在点处的切线方程;(2)求函数的极值22.(10分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B2、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.3、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.4、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B5、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B6、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.7、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C8、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C9、B【解析】根据输入的条件执行循环,并且每一次都要判断结论是或否,直至退出循环.【详解】,,,;,【点睛】本题考查程序框图,执行循环,属于基础题.10、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.11、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D12、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解析】对①:由连接,,由平面,即可判断;对③:设到平面的距离为,则,所以即可判断;对④:以为坐标原点建立如图所示的空间直角坐标系,设,利用向量法求出与,比较大小即可判断;对②:设与平面夹角为,利用向量法求出,即可求解判断.【详解】解:对①:连接,,在正方体中,由平面,可得,又,,所以平面,所以,故①错误;对③:设到平面的距离为,则,所以,故③正确;对④:以为坐标原点建立如图所示的空间直角坐标系,设,则,0,,,0,,,,,,,,所以,,,,,,设平面的法向量为,,,则,即,取,,,又,1,是平面的一个法向量,又二面角为锐二面角或直角,所以,,,又,,,故④错误对②:由④的解析知,,,,设平面的法向量为,则,即,取,则,设与平面夹角为,令,即,又,解得或,故②正确.故答案为:②③.14、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.15、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;16、2【解析】根据,由求解.【详解】因为向量,向量,且,所以,解得,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据焦距求出,利用面积最大值,得到求出,从而得到,求出椭圆方程;(2)分直线斜率存在和斜率不存在,结合题干条件得到,进而求出直线方程.【小问1详解】∵∴,又的面积最大值,则,所以,从而,,故椭圆的方程为:;【小问2详解】①当直线的斜率存在时,设,代入③整理得,设、,则,所以,点到直线的距离因为,即,又由,得,所以,.而,,即,解得:,此时;②当直线的斜率不存在时,,直线交椭圆于点、.也有,经检验,上述直线均满足,综上:直线的方程为或.【点睛】圆锥曲线中,有关向量的题目,要结合条件选择不同的方法,一般思路有转化为三角形面积,或者线段的比,或者由向量得到共线等.18、(1);(2)最大值为2,【解析】(1)根据题意,将圆的方程变形为标准方程,由点与圆的位置关系可得,求解不等式组得答案;(2)当时,圆的方程为,求出圆心与半径,设,则,分析可得面积的最大值,结合直线与圆的位置关系可得圆心到直线的距离,设直线的方程为,即,由点到直线的距离公式列式求得的值【详解】解:(1)根据题意,圆,即,若在圆外,则有,解得:,即的取值范围为;(2)当时,圆的方程为,圆心为,半径,设,则,当时,面积取得最大值,且其最大值为2,此时为等腰直角三角形,圆心到直线的距离,设直线的方程为,即,则有,解得,即直线的斜率【点睛】易错点点睛:本题第一问解答过程中,容易忽视二元二次方程表示圆的条件,导致出错,解题的时候要考虑周全,考查运算求解能力,是中档题.19、(1)(2)【解析】(1)解一元二次不等式,即可求得当为真命题时的取值范围;(2)先求得命题为真命题时的取值范围.由为假命题,为真命题可知,两命题一真一假.分类讨论,即可求得的取值范围.【详解】(1)当为真命题时,解不等式可得;(2)当为真命题时,由,可得,∵为假命题,为真命题,∴,两命题一真一假,∴或,解得或,∴m的取值范围是.【点睛】本题考查了根据命题真假求参数的取值范围,由复合命题真假判断命题真假,并求参数的取值范围,属于基础题.20、(1);(2).【解析】(1)根据给定的递推公式结合“当时,”探求相邻两项的关系计算作答.(2)由(1)的结论求出,再利用裂项相消法求出,即可作答.【小问1详解】依题意,,,则当时,,于是得:,即,而当时,,即有,因此,,,所以数列是以2为首项,2为公比的等比数列,,所以数列的通项公式是.【小问2详解】由(1)知,,从而有,所以.21、(1)(2)极大值为12,极小值-15【解析】(1)利用导数的几何意义求解即可.(2)利用导数求解极值即可.【小问1详解】,,切点为,故切线方程为,即;【小问2详解】令,得或列表:-12+0-0+单调递增12单调递减-15单调递增函数的极大值为,函数的极小值为.22、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论