版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
怀化市重点中学2025届数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在上是增函数的是A. B.C. D.2.已知集合,,则A. B.C. D.3.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.644.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,5.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.6.已知,点在轴上,,则点的坐标是A. B.C.或 D.7.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或18.已知函数,若,则恒成立时的范围是()A. B.C. D.9.函数在上最大值与最小值之和是()A. B.C. D.10.若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.的值是________12.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.13.函数的定义域是____________.14.《三十六计》是中国古代兵法策略,是中国文化的瑰宝.“分离参数法”就是《三十六计》中的“调虎离山”之计在数学上的应用,例如,已知含参数的方程有解的问题,我们可分离出参数(调),将方程化为,根据的值域,求出的范围,继而求出的取值范围,已知,若关于x的方程有解,则实数的取值范围为___________.15.锐角中,分别为内角的对边,已知,,,则的面积为__________16.在单位圆中,已知角的终边与单位圆的交点为,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简求值:(1);(2).18.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.19.已知函数f(x)=+ln(5-x)的定义域为A,集合B={x|2x-a≥4}.(Ⅰ)当a=1时,求集合A∩B;(Ⅱ)若A∪B=B,求实数a的取值范围.20.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a21.在国家大力发展新能源汽车产业政策下,我国新能源汽车的产销量高速增长.某地区年底新能源汽车保有量为辆,年底新能源汽车保有量为辆,年底新能源汽车保有量为辆(1)根据以上数据,试从(,且),,(,且),三种函数模型中选择一个最恰当的模型来刻画新能源汽车保有量的增长趋势(不必说明理由),设从年底起经过年后新能源汽车保有量为辆,求出新能源汽车保有量关于的函数关系式;(2)假设每年新能源汽车保有量按(1)中求得的函数模型增长,且传统能源汽车保有量每年下降的百分比相同,年底该地区传统能源汽车保有量为辆,预计到年底传统能源汽车保有量将下降.试估计到哪一年底新能源汽车保有量将超过传统能源汽车保有量.(参考数据:,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对于,,当时为减函数,故错误;对于,,当时为减函数,故错误;对于,在和上都是减函数,故错误;故选2、A【解析】由得,所以;由得,所以.所以.选A3、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.4、C【解析】根据相同函数的判断原则进行定义域的判断即可选出答案.【详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C5、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C6、C【解析】依题意设,根据,解得,所以选.7、A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.8、B【解析】利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.【详解】∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5故答案为B【点睛】本题主要考查函数的奇偶性和单调性,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.9、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.10、A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据诱导公式以及特殊角的三角函数值求解.【详解】解:故答案为:【点睛】本题考查诱导公式以及特殊角的三角函数值,解答的关键是熟练记忆公式,属于基础题.12、③⑤【解析】对每一个命题逐一判断得解.【详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【点睛】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.13、【解析】利用对数函数的定义域列出不等式组即可求解.【详解】由题意可得,解得,所以函数的定义域为.故答案为:14、【解析】参变分离可得,令,构造函数,利用导数求解函数单调性,分析可得的值域为,即得解【详解】由题意,,故又,,令故,令,故在单调递增由于时故的值域为故,即实数的取值范围为故答案为:15、【解析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【点睛】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化16、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据根式的性质,指数运算公式,对数运算公式化简计算;(2)根据诱导公式和同角关系化简.【小问1详解】原式.【小问2详解】原式.18、(1)(2)【解析】(1)先解分式不等式和二次不等式得集合,再求补集和交集即可;(2)先判断得,再根据必要条件得到集合的包含关系,列不等式求解即可.【小问1详解】∵时,,,全集,∴或.∴【小问2详解】∵命题:,命题:,是必要条件,∴∵,∴,∵,,∴,解得或,故实数的取值范围19、(I);(II).【解析】(Ⅰ)可求出定义域,从而得出,并可求出集合,从而得出时的集合,然后进行交集的运算即可;(Ⅱ)根据即可得出,从而得出,从而得出实数的取值范围【详解】解:(Ⅰ)要使f(x)有意义,则:;解得-4≤x<5;∴A={x|-4≤x<5};B={x|x≥a+2},a=1时,B={x|x≥3};∴A∩B={x|3≤x<5};(Ⅱ)∵A∪B=B;∴A⊆B;∴a+2≤-4;∴a≤-6;∴实数a的取值范围为(-∞,-6].【点睛】考查函数的定义域的概念及求法,交集的概念及运算,以及子集的概念,属于基础题.20、(1)对称轴为,单调减区间(2)【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】21、(1)应选择的函数模型是(,且),函数关系式为;(2)年底.【解析】(1)根据题中的数据可得出所选的函数模型,然后将对应点的坐标代入函数解析式,求出参数的值,即可得出函数解析式;(2)设传统能源汽车保有量每年下降的百分比为,根据题意求出的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资金赞助与项目推进计划
- 软件合同保密协议的立法动态更新
- 软件采购招标文件范本
- 还款延期借款合同
- 运维服务项目合同格式
- 远程教育培训合同范本
- 连带责任保证书个人填写指南
- 酒店保洁服务分包协议
- 钢制货架销售协议
- 铸件贸易合作合同
- 豆制品购销合同
- 中国共产主义青年团团章
- 《TCPIP协议基础》课件
- 2024年财务部年终工作计划例文(5篇)
- 折叠椅市场发展现状调查及供需格局分析预测报告
- 变电检修工-高级工练习题含参考答案
- Unit 4 My Favourite Subject .大单元整体说课稿2024-2025学年人教版英语七年级上册
- 儿童口腔保健(妇幼保健院讲师课件)
- 2024年四川省安全员B证考试试题题库
- 2024年全新血液透析
- 普外科一科一品一特色科室活动方案
评论
0/150
提交评论