2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题含解析_第1页
2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题含解析_第2页
2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题含解析_第3页
2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题含解析_第4页
2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏银川市宁夏大学附中高二数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°2.直线恒过定点()A. B.C. D.3.学校开设甲类选修课3门,乙类选修课4门,从中任选3门,甲乙两类课程都有选择的不同选法种数为()A.24 B.30C.60 D.1204.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.75.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.6.是等差数列,,,的第()项A.98 B.99C.100 D.1017.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.98.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图9.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.10.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣211.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或2312.函数的最小值是()A.2 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若存在,使得成立,则实数的取值范围是_______________14.直线与圆相交于两点M,N,若满足,则________15.曲线在点M(π,0)处的切线方程为________16.如图,图形中的圆是正方形的内切圆,点E,F,G,H为对角线与圆的交点,若向正方形内随机投入一点,则该点落在阴影部分区域内的概率为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.18.(12分)已知向量,(1)求;(2)求;(3)若(),求的值19.(12分)如图长方体中,,,点为的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.20.(12分)如图,点分别在射线,上运动,且(1)求;(2)求线段的中点M的轨迹C的方程;(3)直线与,轨迹C及自上而下依次交于D,E,F,G四点,求证:21.(12分)已知函数(a为常数)(1)讨论函数的单调性;(2)不等式在上恒成立,求实数a的取值范围.22.(10分)等差数列的前项和为,数列是等比数列,满足,,,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.2、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A3、B【解析】利用组合数计算出正确答案.【详解】甲乙两类课程都有选择的不同选法种数为.故选:B4、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D5、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.6、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C7、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等8、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A9、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.10、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B11、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.12、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分离参数法得到能成立,构造函数,求出的最小值,即可求出实数a的取值范围.【详解】由得.设,则存在,使得成立,即能成立,所以能成立,所以.又令,由对勾函数的性质可得:在上,t(x)单调递增,所以当x=2时,t有最小值,所以实数a的取值范围是.故答案为:【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.14、【解析】由点到直线的距离公式,结合已知可得圆心到直线的距离,再由圆的弦长公式可得,然后可解.【详解】因为,所以,所以,圆心到直线的距离因为,所以,所以故答案为:15、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.16、【解析】利用几何概型概率计算公式,计算得所求概率.【详解】设正方形的边长为2,则阴影部分的面积为,故若向正方形内随机投入一点,则该点落在阴影部分区域内概率为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.18、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.19、(1)见解析(2)见解析(3)【解析】(1)作辅助线,由中位线定理证明,再由线面平行的判定定理证明即可;(2)连接,由勾股定理证明,,再结合线面垂直的判定定理证明即可;(3)建立空间直角坐标系,利用向量法求面面角的余弦值即可.【详解】(1)连接交与点,连接四边形为正方形,点为的中点又点为的中点,平面,平面平面(2)连接由勾股定理可知,,则同理可证,平面平面(3)建立如下图所示的空间直角坐标系显然平面的法向量即为平面的法向量,不妨设为由(2)可知平面,即平面的法向量为又二面角是钝角二面角的余弦值为【点睛】关键点睛:在第一问中,关键是利用中位线定理找到线线平行,再由定义证明线面平行;在第二问中,关键是利用勾股定理证明线线垂直,从而得出线面垂直;在第三问中,关键是建立坐标系,利用向量法求面面角的余弦值.20、(1)2(2)(3)证明见详解【解析】(1)用两点间的距离公式和三角形的面积公式,结合已知直接可解;(2)根据中点坐标公式,结合(1)中结论可得;(3)要证,只需证和的中点重合,直接或利用韦达定理求出中点横坐标,证明其相等即可.【小问1详解】记直线的倾斜角为,则,易得所以因为,所以,整理得:【小问2详解】设点M的坐标为,则即,由(1)知,所以,即【小问3详解】要证,只需证和的中点重合,记D,E,F,G的横坐标分别为,易知直线的斜率(当时与渐近线平行或重合,此时与双曲线最多一个交点)则解方程组,得解方程组,得将代入,得所以因为所以所以和的中点的横坐标相等,所以和的中点重合,记其中点为N,则有,即21、(1)当时,在定义域上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)求出的导数,通过讨论的范围,求出函数的单调区间即得解;(2)问题转化为,,,令,求出的最大值,从而求出的范围即得解【详解】解:(1)函数的定义域为,,①当时,,,,在定义域上单调递增②当时,若,则,在上单调递增;若,则,在上单调递减综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减(2)当时,,不等式在,上恒成立,,,,令,,,,在,上单调递增,(1),,的范围为,22、(1),(2)【解析】(1)根据条件列关于公差与公比的方程组,解方程组可得再根据等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论