2025届河南省辉县一高高二上数学期末统考模拟试题含解析_第1页
2025届河南省辉县一高高二上数学期末统考模拟试题含解析_第2页
2025届河南省辉县一高高二上数学期末统考模拟试题含解析_第3页
2025届河南省辉县一高高二上数学期末统考模拟试题含解析_第4页
2025届河南省辉县一高高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省辉县一高高二上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)2.已知直线:和直线:,抛物线上一动点P到直线和直线的距离之和的最小值是()A. B.C. D.3.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.4.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.6.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.7.直线与圆相交与A,B两点,则AB的长等于()A3 B.4C.6 D.18.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42C.43 D.459.在空间四边形OABC中,,,,点M在线段OA上,且,N为BC中点,则等于()A. B.C. D.10.已知下列四个命题,其中正确的是()A. B.C. D.11.已知向量,,且与互相垂直,则()A. B.C. D.12.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知拋物线的焦点为F,O为坐标原点,M的准线为l且与x轴相交于点B,A为M上的一点,直线AO与直线l相交于C点,若,,则M的标准方程为______________.14.抛物线的焦点坐标为_____.15.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)16.已知函数,有且只有一个零点,则实数的取值范围是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.18.(12分)已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值19.(12分)已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和20.(12分)已知抛物线的焦点为,直线与抛物线交于,两点,且(1)求抛物线的方程;(2)若,是抛物线上一点,过点的直线与抛物线交于,两点(均与点不重合),设直线,的斜率分别为,,求证:为定值21.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.22.(10分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.2、A【解析】根据已知条件,结合抛物线的定义,可得点P到直线和直线的距离之和,当B,P,F三点共线时,最小,再结合点到直线的距离公式,即可求解【详解】∵抛物线,∴抛物线的准线为,焦点为,∴点P到准线的距离PA等于点P到焦点F的距离PF,即,∴点P到直线和直线的距离之和,∴当B,P,F三点共线时,最小,∵,∴,∴点P到直线和直线的距离之和的最小值为故选:A3、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A4、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C5、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.7、C【解析】根据弦长公式即可求出【详解】因为圆心到直线的距离为,所以AB的长等于故选:C8、B【解析】根据已知求出公差即可得出.【详解】设等差数列的公差为,因为,,所以,则.故选:B.9、B【解析】由题意结合图形,直接利用,求出,然后即可解答.【详解】解:因为空间四边形OABC如图,,,,点M在线段OA上,且,N为BC的中点,所以.所以.故选:B.10、B【解析】根据基本初等函数的求导公式和求导法则即可求解判断.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B.11、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.12、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先利用相似关系计算,求得直线OA的方程,再联立方程求得,利用抛物线定义根据即得p值,即得结果.【详解】因为,,所以,则,如图,,故,解得,所以,直线OA的斜率为,OA的方程,联立直线OA与抛物线方程,解得,所以,故,则抛物线标准方程为.故答案为:.14、【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标.解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写考点:抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①16、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是函数的零点,由,得.令,则.或时,,时,,所以在和上都是减函数,在上是增函数,时取极小值,又当时,.所以时,关于的方程无解,或时关于的方程只有一个解,时,关于的方程有两个不同解.因此,时函数没有零点,或时函数有且只有一个零点,时,函数有两个零点.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查利用导数判断函数的零点,解题的关键是由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,考查数形结合的思想,属于中档题18、(1)或(2)4【解析】(1)设直线方程为,根据所过的点及面积可得关于的方程组,求出解后可得直线方程,我们也可以设直线,利用面积求出后可得直线方程.(2)结合(1)中直线方程的形式利用基本不等式可求面积的最小值.【小问1详解】法一:(1)设直线,则解得或,所以直线或法二:设直线,,则,则,∴或﹣8所以直线或【小问2详解】法一:∵,∴,∴,此时,∴面积的最小值为4,此时直线法二:∵,∴,此时,∴面积的最小值为4,此时直线19、(1)(2)【解析】(1)由等比数列的前项和公式,等比数列的基本量运算列方程组解得和公比后可得通项公式;(2)用错位相减法求得和【小问1详解】设数列的公比为q,由,,得,解之得所以;【小问2详解】,又,得,,两式作差,得,所以20、(1)(2)证明见解析【解析】(1)联立直线和抛物线方程,根据抛物线定义和焦半径公式得到,根据韦达定理可得到最终结果;(2)代入点坐标可得到参数的值,设直线的方程为,联立该直线和抛物线方程,,代入韦达定理可得到最终结果.【小问1详解】设点,,点,,联立,整理得,,由抛物线的定义知,解得,抛物线的方程为【小问2详解】,为抛物线上一点,,即,设,,,,直线的方程为,由,消去得,,,,即为定值21、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.22、(1);(2)【解析】(1)首先将命题,化简,然后由为真可得,均为真,取交集即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论