![2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view9/M02/0C/25/wKhkGWcafvSAfO0xAAILaxP-9Ik042.jpg)
![2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view9/M02/0C/25/wKhkGWcafvSAfO0xAAILaxP-9Ik0422.jpg)
![2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view9/M02/0C/25/wKhkGWcafvSAfO0xAAILaxP-9Ik0423.jpg)
![2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view9/M02/0C/25/wKhkGWcafvSAfO0xAAILaxP-9Ik0424.jpg)
![2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view9/M02/0C/25/wKhkGWcafvSAfO0xAAILaxP-9Ik0425.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省东南联合体高三数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,集合,则()A. B. C. D.2.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加3.已知集合A,则集合()A. B. C. D.4.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.5.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A. B. C. D.6.要得到函数的图象,只需将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.848.的内角的对边分别为,已知,则角的大小为()A. B. C. D.9.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.10.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于11.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是()A.1 B.2 C.3 D.412.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.8二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件且的最小值为7,则=_________.14.已知复数对应的点位于第二象限,则实数的范围为______.15.已知正实数满足,则的最小值为.16.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.18.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.19.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.20.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.21.(12分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.(1)求和的标准方程;(2)过点的直线与交于,与交于,求证:.22.(10分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先化简集合A,再求.【详解】由得:,所以,因此,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.2、D【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.3、A【解析】
化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.4、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5、A【解析】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,,,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.6、D【解析】
直接根据三角函数的图象平移规则得出正确的结论即可;【详解】解:函数,要得到函数的图象,只需将函数的图象向左平移个单位.故选:D.【点睛】本题考查三角函数图象平移的应用问题,属于基础题.7、D【解析】
利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.8、A【解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.9、A【解析】
由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.10、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.11、C【解析】
设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.12、B【解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据约束条件画出可行域,再把目标函数转化为,对参数a分类讨论,当时显然不满足题意;当时,直线经过可行域中的点A时,截距最小,即z有最小值,再由最小值为7,得出结果;当时,的截距没有最小值,即z没有最小值;当时,的截距没有最大值,即z没有最小值,综上可得出结果.【详解】根据约束条件画出可行域如下:由,可得出交点,由可得,当时显然不满足题意;当即时,由可行域可知当直线经过可行域中的点A时,截距最小,即z有最小值,即,解得或(舍);当即时,由可行域可知的截距没有最小值,即z没有最小值;当即时,根据可行域可知的截距没有最大值,即z没有最小值.综上可知满足条件时.故答案为:3.【点睛】本题主要考查线性规划问题,约束条件和目标函数中都有参数,要对参数进行讨论.14、【解析】
由复数对应的点,在第二象限,得,且,从而求出实数的范围.【详解】解:∵复数对应的点位于第二象限,∴,且,∴,故答案为:.【点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且是解题的关键,属于基础题.15、4【解析】
由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.16、【解析】
根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理结合条件求得和,利用椭圆的定义求得的值,进而可得出,则椭圆的标准方程可求;(Ⅱ)设点、,将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式求出,利用几何法求得直线截圆所得弦长,可得出关于的函数表达式,利用不等式的性质可求得的取值范围.【详解】(Ⅰ)在椭圆上,,,,,,,又,,,,椭圆的标准方程为;(Ⅱ)设点、,联立消去,得,,则,,设圆的圆心到直线的距离为,则.,,,,的取值范围为.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中弦长之积的取值范围的求解,涉及韦达定理与弦长公式的应用,考查计算能力,属于中等题.18、(1)乙同学正确(2)分布列见解析,【解析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列【点睛】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.19、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即直线与平面所成角的正弦值为.20、(1)(2);【解析】
(1)由代入中计算即可;(2)由余弦定理可得,所以,由,变形即可得到答案.【详解】(1)因为,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【点睛】本题考查二倍角公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.21、(1),;(2)证明见解析.【解析】分析:(1)设的标准方程为,由题意可设.结合中点坐标公式计算可得的标准方程为.半径,则的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房设备承包合同
- 生态养殖基地承包合同
- 项目进度追踪与协同策划方案
- 现代学徒制师徒协议
- 柑橘树承包合同
- 食品安全检测技术研究开发合作协议
- 汽车租赁合同租赁车辆交接确认书
- 投资借款合同书
- 共建联合实验室合作合同协议书范本模板5篇
- 活动一《自己种菜乐趣多》(教学设计)-2023-2024学年四年级上册综合实践活动沪科黔科版
- 大数据专业实习报告范文共5篇
- 出口退税培训课件外贸企业出口退税
- 蛋白表达及纯化课件
- 304不锈钢管材质证明书
- DBJ 46-027-2013 海南省建筑塔式起重机安装使用安全评定规程
- 港口集装箱物流系统建模与仿真技术研究-教学平台课件
- 杭州湾跨海大桥项目案例ppt课件
- (完整版)光荣榜25张模板
- 工业催化剂作用原理—金属氧化物催化剂
- 优秀教材推荐意见(真实的专家意见)
- QTD01钢质焊接气瓶检验工艺指导书
评论
0/150
提交评论