版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省杭州市建人高复高三数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是第二象限的角,,则()A. B. C. D.2.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.3.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.1204.已知向量,则是的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件5.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格6.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.7.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A. B. C.- D.-8.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.9.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.10.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.11.已知角的终边与单位圆交于点,则等于()A. B. C. D.12.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____14.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.15.在中,,点是边的中点,则__________,________.16.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.18.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).20.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.21.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.22.(10分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,,即,因为,所以,由二倍角的正弦公式可得,,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.2、D【解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.3、C【解析】
观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.4、A【解析】
向量,,,则,即,或者-1,判断出即可.【详解】解:向量,,,则,即,或者-1,所以是或者的充分不必要条件,故选:A.【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.5、D【解析】
先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.6、A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.7、A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.8、A【解析】
先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.9、C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.10、B【解析】
根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.11、B【解析】
先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.12、C【解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,,,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、80211【解析】
由,利用二项式定理即可得,分别令、后,作差即可得.【详解】由题意,则,令,得,令,得,故.故答案为:80,211.【点睛】本题考查了二项式定理的应用,属于中档题.14、【解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.【详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,,,侧棱底面,则该几何体的体积为,,,因此,该棱锥的最长棱的长度为.故答案为:;.【点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.15、2【解析】
根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【详解】中,,,可得因为点是边的中点,所以故答案为:;.【点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.16、【解析】
求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.【详解】抛物线E:的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长.【点睛】本题考查了抛物线的准线、圆的弦长公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1))当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.18、(1)证明见解析(2)(3)【解析】
(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、见解析【解析】
若选择①,结合三角形的面积公式,得,化简得到,则,又,从而得到,将代入,得.又,∴,当且仅当时等号成立.∴,故的面积的最大值为,此时.若选择②,,结合三角形的面积公式,得,化简得到,则,又,从而得到,则,此时为等腰直角三角形,.若选择③,,则结合三角形的面积公式,得,化简得到,则,又,从而得到,则.20、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.21、(1)见解析(2)【解析】
(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以,又因为,,,所以,因此,所以,因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量,由,由,令,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物料管理主管竞聘
- 《鱼丸配方生产流程》课件
- 纵隔气肿处理及治疗
- 租住酒店合同模板
- 目标课件教学课件
- 松下新风产品培训
- 常见疾病病因与治疗方法-遗传性共济失调
- 2024版股权激励合同详细范本3篇
- 手机怎样做课件
- 2024年医药产品研发与临床试验合同
- 初高中数学衔接课程校本教材纲要
- 三年级(上)习作《我们的运动会》课件
- 小学语文人教二年级上册(2023年新编)演示第四单元-空中飞羊教学反思
- GB∕T 7739.1-2019 金精矿化学分析方法 第1部分:金量和银量的测定
- DB63∕T 1841-2020 青海省农牧民住房抗震技术规程
- 田英章《千字文》毛笔字帖
- [中建]鲁班奖工程设备安装质量创优汇报培训PPT92页(多图)
- 特种设备登记台账(参考模板)
- 市政工程类建筑施工项目危险源辨识及风险管控清单
- 基本螺栓扭紧策略PPT课件[通用]
- 废钢回收及加工配送建设项目可行性研究报告
评论
0/150
提交评论