安徽宿州五校2025届数学高二上期末综合测试试题含解析_第1页
安徽宿州五校2025届数学高二上期末综合测试试题含解析_第2页
安徽宿州五校2025届数学高二上期末综合测试试题含解析_第3页
安徽宿州五校2025届数学高二上期末综合测试试题含解析_第4页
安徽宿州五校2025届数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽宿州五校2025届数学高二上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的长轴长为()A. B.C. D.2.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.3.已知函数在区间有且仅有2个极值点,则m的取值范围是()A. B.C. D.4.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则5.下列函数的求导正确的是()A. B.C. D.6.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.87.函数极小值为()A. B.C. D.8.在正方体中,,则()A. B.C. D.9.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或210.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.11.关于的不等式的解集为()A. B.C.或 D.12.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.8二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程是________14.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______15.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647616.数列中,,,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.18.(12分)已知,,其中(1)已知,若为真,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围19.(12分)已知锐角的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,求外接圆面积的最小值.20.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和21.(12分)已知抛物线,直线与交于两点且(为坐标原点)(1)求抛物线的方程;(2)设,若直线的倾斜角互补,求的值22.(10分)已知点是椭圆上的一点,且椭圆的离心率.(1)求椭圆的标准方程;(2)两动点在椭圆上,总满足直线与的斜率互为相反数,求证:直线的斜率为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.2、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A3、A【解析】根据导数的性质,结合余弦型函数的性质、极值的定义进行求解即可.【详解】由,,因为在区间有且仅有2个极值点,所以令,解得,因此有,故选:A4、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D5、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B6、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D7、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.8、A【解析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为,而,所以有,故选:A9、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:10、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A11、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.12、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准形式,从而得到准线方程.【详解】抛物线方程可化为:抛物线准线方程为:故答案为【点睛】本题考查抛物线准线的求解,易错点是未将抛物线方程化为标准方程.14、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:15、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.16、##0.5【解析】直接计算得到答案.【详解】∵,,则,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立空间直角坐标系.则,,,所以,由已知可知平面ABCD的一个法向量设平面的一个法向量为,由,即,得,令,则,所以,由图形可得二面角为锐角,所以二面角的余弦值为.18、(1)(2)【解析】(1)求出两个命题为真命题时的解集然后利用为真,取并求得的取值范围;(2)由是的充分不必要条件,即,,其逆否命题为,列出不等式组求解即可.【详解】(1)由,解得,所以又,因为,解得,所以.当时,,又为真,所以.(2)由是的充分不必要条件,即,,其逆否命题为,由(1),,所以,即:【点睛】该题考查的是有关逻辑的问题,涉及到的知识点有命题的真假判断与应用,充分不必要条件对应的等价结果,注意原命题与逆否命题等价,属于简单题目.19、(1)(2)【解析】(1)利用二倍角公式将已知转化为正弦函数,解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圆半径的最小值,然后可解.【小问1详解】因为,所以,解得或(舍去),又为锐角三角形,所以.【小问2详解】因为,当且仅当时,等号成立,所以.外接圆的半径,故外接圆面积的最小值为.20、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.21、(1);(2).【解析】(1)利用韦达定理法即求;(2)由题可求,,再结合条件即得.【小问1详解】设,,由,得,故,由,可得,即,∴,故抛物线的方程为:;【小问2详解】设的倾斜角为,则的倾斜角为,∴由,得,∴,∴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论