湖北省八校联合体2025届高二数学第一学期期末达标检测试题含解析_第1页
湖北省八校联合体2025届高二数学第一学期期末达标检测试题含解析_第2页
湖北省八校联合体2025届高二数学第一学期期末达标检测试题含解析_第3页
湖北省八校联合体2025届高二数学第一学期期末达标检测试题含解析_第4页
湖北省八校联合体2025届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省八校联合体2025届高二数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从直线上动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是()A. B.C. D.2.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.3.数列,,,,…,的通项公式可能是()A. B.C. D.4.如果向量,,共面,则实数的值是()A. B.C. D.5.若展开式的二项式系数之和为,则展开式的常数项为()A. B.C. D.6.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm7.圆关于直线对称,则的最小值是()A. B.C. D.8.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.9.若命题为“,”,则为()A., B.,C., D.,10.若复数z满足(其中为虚数单位),则()A. B.C. D.11.设,,,则a,b,c的大小关系为()A. B.C. D.12.已知三棱锥,点分别为的中点,且,用表示,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________14.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.15.若x,y满足约束条件,则的最小值为___________.16.设实数、满足约束条件,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标18.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和19.(12分)已知椭圆C:(a>b>0)的离心率e为,点在椭圆上(1)求椭圆C的方程;(2)若A、B为椭圆的左右顶点,过点(1,0)的直线交椭圆于M、N两点,设直线AM、BN的斜率分别为,求证为定值20.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.21.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和22.(10分)如图,在梯形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)点在线段含端点上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析可知当时,最大,计算出、,进而可计算得出四边形(为坐标原点)面积.【详解】圆的圆心为坐标原点,连接、、,则,设,则,,则,当取最小值时,,此时,,,,故,此时,.故选:B.2、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B3、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D4、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.5、C【解析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得结果即可.【详解】解:因为展开式的二项式系数之和为,则,所以,令,求得,所以展开式的常数项为.故选:C.6、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B7、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.8、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.9、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B10、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B11、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A12、D【解析】连接,利用,化简即可得到答案.【详解】连接,如下图.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.14、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:15、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.16、2【解析】画出不等式组对应的可行域,平移动直线后可得目标函数的最小值.【详解】不等式组对应的可行域如图所示:将初始直线平移至点时,可取最小值,由可得,故,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解】∵直线的方程为,点R是线段FP的中点且,∴RQ是线段FP的垂直平分线,∵,∴是点Q到直线l的距离,∵点Q在线段FP的垂直平分线,∴,则动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即动点Q轨迹的方程为.【小问2详解】设,,由题意直线AB斜率存在且不为0,设直线AB的方程为,由已知得,两式作差可得,即,则,代入可得,即点M的坐标为,同理设,,直线的方程为,由已知得,两式作差可得,即,则,代入可得,即点的坐标为,则直线MN的斜率为,即方程为,整理得,故直线MN恒过定点.18、(1)an=n(2)【解析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6成等比数列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小问2详解】因为,所以,所以,所以所以19、(1);(2)证明见解析【解析】(1)根据题意列出关于a、b、c的方程组求出a、b、c即可得椭圆方程;(2)设直线的方程为,,,,,联立直线方程利用韦达定理即可求为定值【小问1详解】;【小问2详解】由椭圆方程可知,,,设直线的方程为,,,,,联立得,∴,,则,∵,,∴,把及代入可得:﹒20、(1);(2).【解析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为21、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:22、(1)证明见解析(2)点与点重合时,二面角的余弦值为【解析】(1)先利用平面几何知识和余弦定理得到及各边长度,利用线面平行的性质和判定定理得到线面垂直,再利用线线平行得到线面垂直;(2)建立空间直角坐标系,设,写出相关点的坐标,得到相关向量的坐标,利用平面的法向量夹角求出二面角的余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论