安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题含解析_第1页
安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题含解析_第2页
安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题含解析_第3页
安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题含解析_第4页
安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省毫州市利辛县第一中学2025届高一上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是()A.或 B.或C. D.2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.3.设是周期为的奇函数,当时,,则A. B.C. D.4.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.5.在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A. B.C. D.6.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.7.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数8.如图,正方形中,为的中点,若,则的值为()A. B.C. D.9.已知集合,,则()A. B.C. D.10.函数的单调递减区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)12.已知幂函数的图象过点,则___________.13.函数的值域是__________14.若函数关于对称,则常数的最大负值为________15.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________16.直线与直线的距离是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式的值.(1);(2).18.在平面直角坐标系中,为坐标原点,已知两点、在轴的正半轴上,点在轴的正半轴上.若,()求向量,夹角的正切值()问点在什么位置时,向量,夹角最大?19.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围20.已知集合,B=[3,6].(1)若a=0,求;(2)xB是xA的充分条件,求实数a的取值范围.21.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【详解】由,得,解得或所以原不等式的解集为或故选:A2、D【解析】根据三视图还原该几何体,然后可算出答案.【详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D3、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.4、D【解析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.5、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B6、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.7、C【解析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题8、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算9、B【解析】解对数不等式求得集合,由此判断出正确选项.【详解】,所以,所以没有包含关系,所以ACD选项错误,B选项正确.故选:B10、D【解析】解不等式,即可得出函数的单调递减区间.【详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.12、##0.25【解析】设,代入点求解即可.【详解】设幂函数,因为的图象过点,所以,解得所以,得.故答案为:13、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.14、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:15、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.16、【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)125(2)0【解析】(1)按照指数运算进行计算即可;(2)按照对数运算进行计算即可;【小问1详解】;【小问2详解】.18、(1)见解析;(2)见解析.【解析】分析:()设向量与轴的正半轴所成的角分别为,则向量所成的夹角为,由两角差的正切公式可得向量夹角的正切值为;()由(1)知,利用基本不等式即可的结果.详解:(1)由题意知,A的坐标为A(0,6),B的坐标为B(0,4),C(x,0),x>0设向量,与x轴的正半轴所成的角分别为α,β,则向量,所成的夹角为|β﹣α|=|α﹣β|,由三角函数的定义知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夹角的正切值等于tan(α﹣β)==,故所求向量,夹角的正切值为tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值为时,夹角|α﹣β|的值也最大,当x=时,取得最大值成立,解得x=2,故点C在x的正半轴,距离原点为2,即点C的坐标为C(2,0)时,向量,夹角最大点睛:本题主要考查利用平面向量的夹角、两角差的正切公式以及基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).19、(1)(2)【解析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.20、(1)(2)【解析】(1)先化简集合A,再去求;(2)结合函数的图象,可以简单快捷地得到关于实数a的不等式组,即可求得实数a的取值范围.【小问1详解】当时,,又,故【小问2详解】由是的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论