江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题含解析_第1页
江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题含解析_第2页
江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题含解析_第3页
江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题含解析_第4页
江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省宿迁市沭阳中学2025届高二上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-32.已知为原点,点,以为直径的圆的方程为()A. B.C. D.3.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.4.的展开式中的系数是()A. B.C. D.5.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.2 B.6C.4 D.126.如图,已知、分别是椭圆的左、右焦点,点、在椭圆上,四边形是梯形,,且,则的面积为()A. B.C. D.7.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.78.平行六面体中,若,则()A. B.1C. D.9.已知点,分别在双曲线的左右两支上,且关于原点对称,的左焦点为,直线与的左支相交于另一点,若,且,则的离心率为()A B.C. D.10.已知等差数列的前项和为,若,则()A B.C. D.11.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大12.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则密码被成功破译的概率_________14.已知点是抛物线的焦点,点分别是抛物线上位于第一、四象限的点,若,则的面积为__________.15.抛物线的准线方程是___________.16.在数列中,若,则该数列的通项公式__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点18.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值19.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点20.(12分)已知数列的前项和为,且.数列是等比数列,,(1)求,的通项公式;(2)求数列的前项和21.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?22.(10分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.2、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒3、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A4、B【解析】根据二项式定理求出答案即可.【详解】的展开式中的系数是故选:B5、C【解析】根据题设条件求出椭圆的长半轴,再借助椭圆定义即可作答.【详解】由椭圆+y2=1知,该椭圆的长半轴,A是椭圆一个焦点,设另一焦点为,而点在BC边上,点B,C又在椭圆上,由椭圆定义得,所以的周长故选:C6、A【解析】设点关于原点的对称点为点,连接、,分析可知、、三点共线,设点、,设直线的方程为,分析可知,将直线的方程与椭圆的方程联立,列出韦达定理,求出的值,可得出的值,再利用三角形的面积公式可求得结果.【详解】设点关于原点的对称点为点,连接、,如下图所示:因为为、的中点,则四边形为平行四边形,可得且,因为,故、、三点共线,设、,易知点,,,由题意可知,,可得,若直线与轴重合,设,,则,不合乎题意;设直线的方程为,联立,可得,由韦达定理可得,得,,则,可得,故,因此,.故选:A.7、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.8、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.9、D【解析】根据双曲线的定义及,,应用勾股定理,可得关系,即可求解.【详解】设双曲线的右焦点为,连接,,,如图:根据双曲线的对称性及可知,四边形为矩形.设因为,所以,又,所以,,在和中,,①,②由②化简可得,③把③代入①可得:,所以,故选:D【点睛】本题主要考查了双曲线的定义,双曲线的简单几何性质,勾股定理,属于难题.10、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.11、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B12、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,由相互独立事件概率的乘法公式可得密码没有被破译的概率,进而由对立事件的概率性质分析可得答案【详解】解:根据题意,甲乙两人能成功破译的概率分别是,,则密码没有被破译,即甲乙都没有成功破译密码概率,故该密码被成功破译的概率故答案为:14、42【解析】由焦半径公式求得参数,得抛物线方程,从而可求得两点纵坐标,再求得直线与轴的交点坐标后可得面积【详解】因为,所以,抛物线的方程为,把代入方程,得(舍去),即.同理,直线方程为,即.所以直线与轴交于点,所以.故答案为:4215、【解析】先根据抛物线方程求出,进而求出准线方程.【详解】抛物线为,则,解得:,准线方程为:.故答案为:16、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.18、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为19、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1),(2)【解析】(1)利用求出通项公式,根据已知求出公比即可得出的通项公式;(2)利用错位相减法可求解.【小问1详解】因为数列的前项和为,且,当时,,当时,,满足,所以,设等比数列的公比为,因为,,所以,解得,所以;【小问2详解】因为,,则,两式相减得,所以.21、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论