山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题含解析_第1页
山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题含解析_第2页
山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题含解析_第3页
山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题含解析_第4页
山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省东营市胜利二中2025届高一上数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数是偶函数且值域为的是()①;②;③;④A.①② B.②③C.①④ D.③④2.函数的图像为()A. B.C. D.3.下列函数是奇函数,且在上单调递增的是()A. B.C. D.4.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.35.的值是A. B.C. D.6.已知x是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.8.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限9.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个10.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)12.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________13.设函数,若关于的不等式的解集为,则__________14.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.15.已知扇形周长为4,圆心角为,则扇形面积为__________.16.已知函数的图像恒过定点A,若点A在一次函数的图像上,其中,则的最小值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值18.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.19.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.20.设全集为,,.(1)当时,求;(2)若,求的取值范围.21.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据奇偶性的定义依次判断,并求函数的值域即可得答案.【详解】对于①,是偶函数,且值域为;对于②,是奇函数,值域为;对于③,是偶函数,值域为;对于④,偶函数,且值域为,所以符合题意的有①④故选:C.2、B【解析】首先判断函数的奇偶性,再根据函数值的特征,利用排除法判断可得;【详解】解:因为,定义域为,且,故函数为偶函数,函数图象关于轴对称,故排除A、D,当时,,所以,故排除C,故选:B3、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.4、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.5、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.6、A【解析】解一元二次不等式得或,再根据集合间的基本关系,即可得答案;【详解】或,或,反之不成立,“”是“”的充分不必要条件,故选:A.7、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.8、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题9、D【解析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【点睛】本题考查线面平行关系,考查空间想象能力以及简单推理能力.10、B【解析】将目标函数变为,由此求得如何将变为目标函数.【详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【点睛】本小题主要考查三角函数图像变换中的平移变换,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.12、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则13、【解析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.14、①.②.【解析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).15、1【解析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.16、8【解析】可得定点,代入一次函数得,利用展开由基本不等式求解.【详解】由可得当时,,故,点A在一次函数的图像上,,即,,,当且仅当,即时等号成立,故的最小值是8.故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A,代入一次函数得出,利用“1”的妙用求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】(1)证明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)证明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四边形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC⊂平面PAC,∴平面PAC⊥平面PBD(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考点:平面与平面垂直的判定.18、(1);(2)答案见解析.【解析】(1)先将分式不等式转化成一元二次不等式,再根据解集与根的关系,即得结果;(2)先将分式不等式转化成一元二次不等式,再结合根的大小对a进行分类讨论求解集即可.【详解】(1)由,得,即,即,等价于,由题意得,则;(2)即,即.①当时,不等式即为,则,此时原不等式解集为;②当时,不等式即为.1°若,则,所以,此时原不等式解集为;2°若,则,不等式为,x不存在,此时原不等式解集为;3°若,则,所以,此时原不等式解集为.【点睛】分式不等式的解法:等价于;等价于;等价于或;等价于或.19、(1)(2)见解析【解析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数解析式确定函数的最大值即可.【详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论