版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8节不等式的性质、一元二次不等式与基本不等式基础知识要夯实1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒an>bn(n∈N,n≥1);(6)可开方:a>b>0⇒>(n∈N,n≥2).3.三个“二次”间的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-没有实数根ax2+bx+c>0(a>0)的解集eq\f({x|x>x2,或x<x1})Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅[微点提醒]1.有关分数的性质(1)若a>b>0,m>0,则;(b-m>0).(2)若ab>0,且a>b⇔.2.对于不等式ax2+bx+c>0,求解时不要忘记a=0时的情形.3.当Δ<0时,不等式ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.4.基本不等式:≤(1)基本不等式成立的条件:a≥0,b≥0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.5.两个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)ab≤(a,b∈R),当且仅当a=b时取等号.6.利用基本不等式求最值已知x≥0,y≥0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).[微点提醒]1.≥2(a,b同号),当且仅当a=b时取等号.2.ab≤≤.3.(a>0,b>0).典型例题剖析考点一不等式的性质角度1比较大小及不等式性质的简单应用【例1-1】(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是()A.c≥b>a B.a>c≥bC.c>b>a D.a>c>b(2)(一题多解)若<0,给出下列不等式:①;②|a|+b>0;③a->b-;④lna2>lnb2.其中正确的不等式是()A.①④ B.②③ C.①③ D.②④角度2利用不等式变形求范围【例1-2】(一题多解)设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.规律方法1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p⇒q和q⇒p是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】(1)(2022·东北三省四市模拟)设a,b均为实数,则“a>|b|”是“a3>b3”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件(2)(2022·天一测试)已知实数a∈(1,3),b∈,则的取值范围是________.考点二一元二次不等式的解法【例2-1】(1)(2022·河南中原名校联考)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-2x,则不等式f(x)>x的解集用区间表示为________.(2)已知不等式ax2-bx-1>0的解集是{x|-<x<-},则不等式x2-bx-a≥0的解集是________.【例2-2】解关于x的不等式ax2-2≥2x-ax(a∈R).规律方法1.解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】(2022·清远一模)关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是()A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3) D.(-∞,1)∪(3,+∞)考点三一元二次不等式恒成立问题角度1在实数R上恒成立【例3-1】(2018·大庆实验中学期中)对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是()A.(-∞,2) B.(-∞,2]C.(-2,2) D.(-2,2]角度2在给定区间上恒成立【例3-2】(一题多解)设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,则m的取值范围是________.角度3给定参数范围的恒成立问题【例3-3】已知a∈[-1,1]时不等式x2+(a-4)x+4-2a>0恒成立,则x的取值范围为()A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞) D.(1,3)规律方法1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】(2022·河南豫西南五校联考)已知关于x的不等式kx2-6kx+k+8≥0对任意x∈R恒成立,则k的取值范围是()A.[0,1] B.(0,1]C.(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.[易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情况转化为a>0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.考点四利用基本不等式求最值多维探究角度1通过配凑法求最值【例4-1】(2022·乐山一中月考)设0<x<,则函数y=4x(3-2x)的最大值为________.角度2通过常数代换法求最值【例4-2】(2019·潍坊调研)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0上,且m,n为正数,则的最小值为________.【规律方法】在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.【训练4】(1)(2022·济南联考)若a>0,b>0且2a+b=4,则的最小值为()A.2 B. C.4 D.(2)已知x<,则f(x)=4x-2+的最大值为______.考点五基本不等式在实际问题中的应用【例5】运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.【规律方法】1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练5】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足函数关系式x=3-.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.考点六基本不等式的综合应用【例6】(1)(2019·河南八校测评)已知等差数列{an}中,a3=7,a9=19,Sn为数列{an}的前n项和,则的最小值为________.(2)(一题多解)(2018·江苏卷)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为________.【规律方法】基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练6】(2022·厦门模拟)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(-∞,-1) B.(-∞,2-1)C.(-1,2-1) D.(-2-1,2-1)[思维升华]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y=x+(m>0)的单调性.[易错防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.达标检测要扎实一、单选题1.关于的不等式的解集为,则不等式的解集为(
)A. B. C. D.2.若0<m<1,则不等式(x-m)<0的解集为(
)A. B.或C.或 D.3.若不等式对一切实数都成立,则的取值范围是A. B.C. D.4.下列不等式中成立的是(
)A.若则B.若则C.若则D.若则5.不等式的解集是A. B.C. D.6.已知关于的方程有两个实数根,则的取值范围为(
)A. B.或C.或 D.7.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为(
)A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)8.若,则(
)A. B. C. D.9.已知,,则的取值范围是(
)A. B. C. D.10.已知关于的一元二次不等式的解集为,则不等式的解集为(
)A. B.C. D.11.若,,且,,则,,,的大小关系是(
)A. B.C. D.12.不等式的解集为,那么不等式的解集为(
)A. B.或C. D.或二、填空题13.已知a>0,b>0,则p=﹣a与q=b﹣的大小关系是_____.14.若关于的不等式的解集不是空集,则的取值范围是________.15.若命题“,”为真命题,则实数m的取值范围为________.16.某地每年销售木材约20万,每立方米的价格为2400元.为了减少木材消耗,决定按销售收入的征收木材税,这样每年的木材销售量减少万,为了既减少了木材消耗又保证税金收入每年不少于900万元,则t的取值范围是________.三、解答题17.已知集合.(1)若中有两个元素,求实数的取值范围;(2)若中至多有一个元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025甘肃省安全员-A证考试题库附答案
- 2025年-河北省安全员-C证考试题库
- 2025重庆市安全员知识题库
- 《手的运动》课件
- 课件:新课标《信用工具和外汇》
- 《PICC置管及其维护》课件
- 《南朝山水诗》课件
- 单位人力资源管理制度合并汇编十篇
- 【语文课件】《落花生》复习课件
- 单位管理制度展示选集【人事管理篇】十篇
- 学校安全事故报告和调查处理制度(四篇)
- 石油化工管道布置设计规范
- 阿尔茨海默病(AD)的影像学诊断
- JJF 1622-2017太阳电池校准规范:光电性能
- GB/T 31.1-2013六角头螺杆带孔螺栓
- 西交大少年班英语考试试题
- 初中生物人教七年级上册(2023年更新) 生物圈中的绿色植物18 开花和结果
- 水电解质及酸碱平衡的业务学习
- CSCEC8XN-SP-安全总监项目实操手册
- 口腔卫生保健知识讲座班会全文PPT
- 成都市产业园区物业服务等级划分二级标准整理版
评论
0/150
提交评论