




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东省郁南县2025届九上数学开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)甲,乙两名选手参加长跑比赛,乙从起点出发匀速跑到终点,甲先快后慢,半个小时后找到适合自己的速度,匀速跑到终点,他们所跑的路程y(单位:km)随时间x(单位:h)变化的图象,如图所示,则下列结论错误的是()A.在起跑后1h内,甲在乙的前面B.跑到1h时甲乙的路程都为10kmC.甲在第1.5时的路程为11kmD.乙在第2h时的路程为20km2、(4分)若直线l与直线y=2x﹣3关于y轴对称,则直线l的解析式是()A.y=﹣2x+3 B.y=﹣2x﹣3 C.y=2x+3 D.y=2x﹣33、(4分)如图,在中,、是的中线,与相交于点,点、分别是、的中点,连接.若,,则四边形的周长是()A. B.C. D.4、(4分)一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.5、(4分)放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离和放学后的时间之间的关系如图所示,给出下列结论:①小刚家离学校的距离是;②小刚跑步阶段的速度为;③小刚回到家时已放学10分钟;④小刚从学校回到家的平均速度是.其中正确的个数是()A.4 B.3 C.2 D.16、(4分)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.7、(4分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个8、(4分)如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为()A.5.5 B.5 C.6 D.6.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.10、(4分)在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的,且这组数据的总个数为120,则中间一组的频数为_______.11、(4分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.12、(4分)如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.13、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________三、解答题(本大题共5个小题,共48分)14、(12分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.15、(8分)某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价半价出售.售完全部水果后,利润不低于3100元,则最初每千克水果的标价是多少?16、(8分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:,,;以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.17、(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?18、(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:候选人评委1评委2评委3甲948990乙929094丙918894(1)分别求出甲、乙、丙三人的面试成绩的平均分、、;(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.20、(4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=12BC,若EF=13,则线段AB的长为_____21、(4分)方程x2=2x的解是__________.22、(4分)如图,在平面直角坐标系中,点A(0,4),将△ABO沿x轴向右平移得△A′B′O′,与点A对应的点A′正好落在直线y=上.则点B与点B′之间的距离为_____.23、(4分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________米.二、解答题(本大题共3个小题,共30分)24、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.25、(10分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).26、(12分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由图象即可判断A,B.通过计算可知甲在第1.5h时的行程为12km,故可判断C错误,求出乙2小时的路程即可判断D.【详解】由图象可知,在起跑后1h内,甲在乙的前面,故A正确;跑到1h时甲乙的路程都为10km,故B正确;∵y乙=10x,当0.5<x<1.5时,y甲=4x+6,x=1.5时,y甲=12,故C错误,x=2时,y乙=20,故D正确,故选C.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.2、B【解析】
利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可。【详解】解:与直线y=2x﹣1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则y=2(﹣x)﹣1,即y=﹣2x﹣1.所以直线l的解析式为:y=﹣2x﹣1.故选:B.本题主要考查了一次函数的图象与几何变换,利用轴对称变换的特点解答是解题关键.3、A【解析】
根据三角形的中位线即可求解.【详解】依题意可知D,E,F,G分别是AC,AB,BO,CO的中点,∴DE是△ABC的中位线,FG是△OBC的中位线,EF是△ABO的中位线,DG是△AOC的中位线,∴DE=FG=BC=2cm,EF=DG=AO=cm,∴四边形的周长是DE+EF+FG+DG=7cm,故选A.此题主要考查中位线的性质,解题的关键是熟知三角形中位线的判定与性质.4、C【解析】
根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小5、A【解析】
由t=0时s=1000的实际意义可判断①;由8≤t≤10所对应的图象表示小刚跑步阶段,根据速度=路程÷时间可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【详解】解:①当t=0时,s=1000,即小刚家离学校的距离是1000m,故①正确;②小刚跑步阶段的速度是=300(m/min),故②正确;
③当s=0时,t=10,即小刚回到家时已放学10min,故③正确;
④小刚从学校回到家的平均速度是=100(m/min),故④正确;
故选:A.本题考查利用函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.6、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.7、D【解析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【详解】解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE²+PE²=PO²,
∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.8、A【解析】
连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),
∴点P到原点的距离==1.故答案为:1此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.10、15【解析】
根据题意可知中间一组的频数占总的频数的,从而可以解答本题.【详解】∵频数分布直方图中共有9个小长方形,且中间一个长方形的高等于其它8个小长方形的高的和的,∴中间一组数据的频数占总频数的,而总频数为120,∴中间一组的频数为:,故答案为:15.本题考查频数分布直方图,解答本题的关键是明确频数分布直方图表示的含义.11、(2,-1).【解析】试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.12、【解析】
由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.【详解】解:∵O1和O2分别是这两个正方形的中心,∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,∴∠O1BO2=∠O1BC+∠O2BC=90°,∴阴影部分的面积=×4×3=12.故答案是:12.本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.13、20或22【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22本题主要考查等腰直角三角形的性质,关键在于确定宽的长.三、解答题(本大题共5个小题,共48分)14、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】
(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.15、(1)第一次购进水果200千克;(2)最初每千克水果标价12元.【解析】
(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;
(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于3100元列出不等式,然后求解即可得出答案.【详解】(1)设第一次购进水果千克,依题意可列方程:解得经检验:是原方程的解.答:第一次购进水果200千克;(2)设最初水果标价为元,依题意可列不等式:解得答:最初每千克水果标价12元.此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.16、(1);(2).【解析】试题分析:(1)分式的分子和分母都乘以,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)①②;(2)原式==.考点:分母有理化.17、(1)每台电冰箱的进价2000元,每台空调的进价1600元.(2)此时应购进电冰箱33台,则购进空调67台.【解析】试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.18、:(1)=91分,=92分,=91分;(2)乙将被录用.【解析】
(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分、和即可;(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.【详解】解:(1)=(94+89+90)÷3=273÷3=91(分),=(92+90+94)÷3=276÷3=92(分),=(91+88+94)÷3=273÷3=91(分),∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分;(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),∵92.8>92.6>92.2,∴乙将被录用.故答案为(1)=91分,=92分,=91分;(2)乙将被录用.本题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.还考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.一、填空题(本大题共5个小题,每小题4分,共20分)19、(1,2)【解析】
根据位似变换的性质,坐标与图形性质计算.【详解】点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),
∴以原点O为位似中心,把△OAB缩小12,得到△OA'B',
∵点A的坐标为(2,4),
∴点A'的坐标为(2×12,4×12),即(1,2),
故答案是:(1考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.20、1【解析】
根据三角形中位线定理得到DE=12BC,DE//BC【详解】解:∵点D,E分别是边AB,AC的中点,∴DE=12BC∵CF=1∴DE=CF,又DE//CF,∴四边形DEFC为平行四边形,∴CD=EF=13,∵∠ACB=90°,点D是边AB的中点,∴AB=2CD=26,故答案为:1.本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.21、x1=0,x2=2【解析】
利用因式分解法解方程即可得到答案.【详解】解:原方程化为:所以:所以:或解得:故答案为:本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.22、【解析】
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【详解】解:如图,连接AA′、BB′.
∵点A的坐标为(0,1),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是1.
又∵点A′在直线y=x上一点,
∴1=x,解得x=.
∴点A′的坐标是(,1),
∴AA′=.
∴根据平移的性质知BB′=AA′=.
故答案为.本题考查了平面直角坐标系中图形的平移,解题的关键是掌握平移的方向和平移的性质.23、32【解析】分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.详解:∵D、E分别是CA,CB的中点,
∴DE是△ABC的中位线,
∴DE∥AB,且AB=2DE,
∵DE=16米,
∴AB=32米.
故答案是:32.点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.二、解答题(本大题共3个小题,共30分)24、详见解析【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.【详解】,∴AC+CF=EF+CF,又,,,,,,∴四边形是平行四边形.本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.25、(1)①补图见解析;②证明见解析;(2)2BE=AD+CN,证明见解析;(3).【解析】分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;(2)BE=AD+CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF=CN,由线段间的关系即可证出结论;(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.详解:(1)①依题意补全图形,如图1所示.②证明:连接CE,如图2所示.∵四边形ABCD是正方形,∴∠BCD=90°,AB=BC,∴∠ACB=∠ACD=∠BCD=45°,∵∠CMN=90°,CM=MN,∴∠MCN=45°,∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=AN.∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上,∴BE垂直平分AC,∴BE⊥AC.(2)BE=AD+CN.证明:∵AB=BC,∠ABE=∠CBE,∴AF=FC.∵点E是AN中点,∴AE=EN,∴FE是△ACN的中位线.∴FE=CN.∵BE⊥AC,∴∠BFC=90°,∴∠FBC+∠FCB=90°.∵∠FCB=45°,∴∠FBC=45°,∴∠FCB=∠FBC,∴BF=CF.在Rt△BCF中,BF2+CF2=BC2,∴BF=BC.∵四边形ABCD是正方形,∴BC=AD,∴BF=AD.∵BE=BF+FE,∴BE=AD+CN.(3)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.∵∠BDC=45°,∠DCN=45°,∴BD∥CN,∴四边形DFCN为梯形.∵AB=1,∴CF=DF=BD=,CN=CD=,∴S梯形DFCN=(DF+CN)•CF=(+)×=.点睛:本题考查了正方形的性质、等腰直角三角形的性质、平行线的性质以及梯形的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60245-3:1994 FR-D Rubber insulated cables - Rated voltages up to and including 450/750 V - Part 3: Heat resistant silicone insulated cables
- 我的成长轨迹写人作文(5篇)
- 胰腺疾病考试试题及答案
- 六一助教活动方案
- 六一实践活动方案
- 六一水果活动方案
- 六一活动做游戏活动方案
- 六一活动双减活动方案
- 六一活动拉拉队活动方案
- 六一活动蛋糕房活动方案
- 期末考试卷-模拟测试卷市场营销王永贵试卷3参考答案
- 北京市大兴区2023-2024学年八年级下学期期末历史试题(原卷版)
- Unit1ScienceFictionUsingLanguage(2)ReadingforWriting课件高中英语人教版选择性
- 初中语文 24 唐诗三首《卖炭翁》公开课一等奖创新教学设计
- 北京海淀十一学校2024届英语七年级第二学期期末教学质量检测模拟试题含答案
- 2023-2024学年辽宁省沈阳市皇姑区七年级(下)期末数学试卷(含答案)
- 酿酒机械与设备智慧树知到期末考试答案章节答案2024年齐鲁工业大学
- 儿童保健门诊规范化建设标准
- 《庖丁解牛》省公开课金奖全国赛课一等奖微课获奖课件
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- 24春国家开放大学《离散数学》大作业参考答案
评论
0/150
提交评论