![2025届甘肃省白银市景泰县数学高二上期末调研试题含解析_第1页](http://file4.renrendoc.com/view12/M03/23/1C/wKhkGWcZNgOAJafMAAHUQEUvBY4804.jpg)
![2025届甘肃省白银市景泰县数学高二上期末调研试题含解析_第2页](http://file4.renrendoc.com/view12/M03/23/1C/wKhkGWcZNgOAJafMAAHUQEUvBY48042.jpg)
![2025届甘肃省白银市景泰县数学高二上期末调研试题含解析_第3页](http://file4.renrendoc.com/view12/M03/23/1C/wKhkGWcZNgOAJafMAAHUQEUvBY48043.jpg)
![2025届甘肃省白银市景泰县数学高二上期末调研试题含解析_第4页](http://file4.renrendoc.com/view12/M03/23/1C/wKhkGWcZNgOAJafMAAHUQEUvBY48044.jpg)
![2025届甘肃省白银市景泰县数学高二上期末调研试题含解析_第5页](http://file4.renrendoc.com/view12/M03/23/1C/wKhkGWcZNgOAJafMAAHUQEUvBY48045.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省白银市景泰县数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平行六面体中,点P在上,若,则()A. B.C. D.2.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等3.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面4.若数列为等比数列,且,,则()A.8 B.16C.32 D.645.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.6.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.57.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.49529.椭圆的两焦点之间的距离为A. B.C. D.10.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.11.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.1412.已知空间向量,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若平面内两定点A,B间的距离为2,动点P满足,则的最小值为_________.14.椭圆C:的左、右焦点分别为,,点A在椭圆上,,直线交椭圆于点B,,则椭圆的离心率为______15.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为_______.16.2021年7月,某市发生德尔塔新冠肺炎疫情,市卫健委决定在全市设置多个核酸检测点对全市人员进行核酸检测.已知组建一个小型核酸检测点需要男医生1名,女医生3名,每小时可做200人次的核酸检测,组建一个大型核酸检测点需要男医生3名,女医生3名.每小时可做300人次的核酸检测.某三甲医院决定派出男医生10名、女医生18名去做核酸检测工作,则这28名医生需要组建________个小型核酸检测点和________个大型核酸检测点,才能更高效的完成本次核酸检测工作.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.18.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.(12分)如图,在三棱柱中,平面,,.(1)求证:平面;(2)点M在线段上,且,试问在线段上是否存在一点N,满足平面,若存在求的值,若不存在,请说明理由?20.(12分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.21.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点22.(10分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C2、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D3、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D4、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B5、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.6、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C7、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D8、D【解析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D9、C【解析】根据题意,由于椭圆的方程为,故可知长半轴的长为,那么可知两个焦点的坐标为,因此可知两焦点之间的距离为,故选C考点:椭圆的简单几何性质点评:解决的关键是将方程变为标准式,然后结合性质得到结论,属于基础题10、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.11、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.12、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,设出P的坐标,求出轨迹方程,然后推出的表达式,转化求解最小值即可.【详解】以经过A,B的直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系.则设,由,则,所以两边平方并整理得,所以P点的轨迹是以(3,0)为圆心,为半径的圆,所以,,则有,则的最小值为.故答案为:.14、(也可以)【解析】可以利用条件三角形为等腰直角三角形,设出边长,找到边长与之间等量关系,然后把等量关系带入到勾股定理表达的等式中,即可求解离心率.【详解】由题意知三角形为等腰直角三角形,设,则,解得,,在三角形中,由勾股定理得,所以,故答案为:(也可以)15、【解析】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出,由此能求出的最小值【详解】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由双曲线的定义,由椭圆定义,可得,,又,,可得,得,即,可得,则,当且仅当,上式取得等号,可得的最小值为故答案为:【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用16、①.4②.2【解析】根据题意建立不等式组,进而作出可行域,最后通过数形结合求得答案.【详解】设需要组建个小型核酸检测点和个大型核酸检测点,则每小时做核酸检测的最高人次,作出可行域如图中阴影部分所示,由图可见当直线过点A时,z取得最大值,由得恰为整数点,所以组建4个小型核酸检测点和2个大型核酸检测点,才能更高效的完成本次核酸检测工作.故答案为:4;2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由直线平面且过点,以及平面,得,设,则,,,设平面的法向量为,则则,即,取,得,易知平面的法向量,设直线与平面所成的角为,平面与平面的夹角为,则,,由,得,即,解得,所以当点与点重合时,直线与平面所成的角和平面与平面的夹角相等.18、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(1)证明见解析;(2)存在,的值为.【解析】(1)先证明,再证明,由线面垂直的判定定理求证即可;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,求出平面的法向量,由平面,利用向量法能求出的值【详解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图,,,,,所以,,设平面的法向量,则,取,得,点M在线段上,且,点N在线段上,设,,设,则,,,即,解得,,,∵,∴,解得.∴的值为.20、(1);(2)证明见解析.【解析】(1)在正方体中,平面,连接,则为与平面所成的角,在直角三角形,求出即可;(2)∵是正方体,又是空间垂直问题,∴易采用向量法,∴建立如图所示的空间直角坐标系,欲证,只须证,再用向量数量积公式求解即可.【小问1详解】在正方体中,平面,连接,则为与平面所成的角,又,,,∴;【小问2详解】如图,以为坐标原点,直线、、分别轴、轴、轴,建立空间直角坐标系.则∴,,∴,∴.21、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保产业新动向环氧脂肪酸甲酯生产工艺优化探讨
- 《第6课 让机器人转圈》教学设计教学反思-2023-2024学年小学信息技术人教版三起01六年级下册
- 11《军神》教学设计-2023-2024学年语文五年级下册统编版
- 2023-2024学年沪科版(2019)高中信息技术必修一2.2《认识智能停车场中的数据处理-体验数据处理的方法和工具》教学设计
- 社区健康食品超市的商业模式创新与经营策略汇报
- 《运动安全我知道:2 运动伤害及其处理》教学设计-2024-2025学年四年级上册综合实践活动沪科黔科版
- 电气安全管理与操作培训的核心要点汇报
- 盆景艺术的文化传播与经济价值挖掘
- 2金木水火土 第1课时(教学设计)2024-2025学年部编版语文一年级上册
- Unit 6 Useful numbers Part A Letters and sounds(教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 集成电路研究报告-集成电路项目可行性研究报告2024年
- 教师师德专题培训
- 2024年湖南生物机电职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 桩基承载力自平衡法检测方案资料
- 成都市2024-2025学年度上期期末高一期末语文试卷(含答案)
- 2025年教育局财务工作计划
- 教科版四年级下册科学科学教案+教材分析
- 广东2024年广东金融学院招聘工作人员10人笔试历年典型考点(频考版试卷)附带答案详解
- T-WSJD 18.22-2024 工作场所空气中化学因素测定 双氯甲醚的便携式气相色谱-质谱法
- 北京市东城区2023-2024学年高二下学期期末英语试题 含解析
- 中国食物成分表2020年权威完整改进版
评论
0/150
提交评论