版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省耿马县第一中学2025届高二上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足且,则的值是()A.1 B.4C.-3 D.62.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.3.已知集合,,则A. B.C. D.4.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.5.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁6.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.267.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.8.某学校高二级选择“史政地”“史政生”和“史地生”组合的同学人数分别为240,120和60.现采用分层抽样的方法选出14位同学进行一项调查研究,则“史政生”组合中选出的人数为()A.8 B.6C.4 D.39.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m10.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为111.已知椭圆的左、右焦点分别为,为轴上一点,为正三角形,若,的中点恰好在椭圆上,则椭圆的离心率是()A. B.C. D.12.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=1二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,则使成立的x的值为___________14.已知直线与直线平行,则直线,之间的距离为__________.15.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.16.定义离心率是的椭圆为“黄金椭圆”.已知椭圆是“黄金椭圆”,则_________.若“黄金椭圆”两个焦点分别为、,P为椭圆C上的异于顶点的任意一点,点M是的内心,连接并延长交于点N,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.18.(12分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.19.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求二面角的余弦值.20.(12分)在等差数列中,(1)求数列的通项公式;(2)设,求21.(12分)已知圆C的圆心C在直线上,且与直线相切于点.(1)求圆C的方程;(2)过点的直线与圆C交于两点,线段的中点为M,直线与直线的交点为N.判断是否为定值.若是,求出这个定值,若不是,说明理由.22.(10分)已知函数.(I)若曲线在点处的切线方程为,求的值;(II)若,求的单调区间.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A2、A【解析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.3、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.4、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质5、D【解析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D6、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.7、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.8、C【解析】根据题意求得抽样比,再求“史政生”组合中抽取的人数即可.【详解】根据题意,分层抽样的抽样比为,故从“史政生”组合120中,抽取的人数时人.故选:.9、C【解析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.10、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D11、A【解析】根据题意得,取线段的中点,则根据题意得,,根据椭圆的定义可知,然后解出离心率的值.【详解】因为为正三角形,所以,取线段的中点,连结,则,所以,得,所以椭圆的离心率.故选:A.【点睛】求解离心率及其范围的问题时,解题的关键在于画出图形,根据题目中的几何条件列出关于,,的齐次式,然后得到关于离心率的方程或不等式求解12、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用空间向量垂直的坐标表示列方程求参数x的值.【详解】由题设,,可得.故答案为:.14、【解析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出【详解】解:因为直线与直线平行,所以,解得,当时,,,则故答案为:【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键15、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.16、①.②.【解析】第一空,直接套入“黄金椭圆”新定义即可,第二空,从内切圆入手,找到等量关系,进而得到,求解即可【详解】由题,,所以如图,连接,设内切圆半径为,则,即,∴,∴,∴∴,∴故答案为:;【点睛】本题从新定义出发,第一空直接套用定义可得答案,第二空升华,需要在理解新定义的基础上,借助内切圆的相关公式求解,层层递进,是一道好题.关键点在于找到“”这一关系三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.18、(1)(2)存在,【解析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜率不存在时也成立,由此确定存在实数t,使得恒成立【小问1详解】由已知得,离心率,所以,故椭圆E的方程为.【小问2详解】当直线l的斜率存在时,设,,,联立方程组得,,所以,..,,所以.所以.当直线l的斜率不存在时,,联立方程组,得,.,,所以.综上,存在实数使得恒成立.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.19、(1)证明见解析(2)【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)以,,为轴的正方向建立空间直角坐标系,求平面,平面的法向量,求法向量的夹角,根据二面角的余弦值与法向量的夹角的余弦的关系确定二面角的余弦值.【小问1详解】由题意,,等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又,平面平面.【小问2详解】由题意直线平面,四边形为正方形,故以,,为轴的正方向建立空间直角坐标系,则,.设面的法向量为,同理可得面的法向量,∴二面角的余弦值为20、(1)(2)【解析】(1)直接利用等差数列的通项公式即可求解;(2)先判断出数列单调性,由时,,时,;然后去掉绝对值,利用等差数列的前项和公式求解即可.【小问1详解】是等差数列,公差;即;【小问2详解】,则由(1)可知前五项为正,第六项开始为负.21、(1)(2)【解析】(1)设过点且与直线垂直的直线为,将代入直线方程,即可求出,再与求交点坐标,得到圆心坐标,再求出半径,即可得解;(2)分直线的斜率存在与不存在两种情况讨论,当斜率不存在直接求出、的坐标,即可求出,当直线的斜率存在,设直线为、、,联立直线与圆的方程,消元列出韦达定理,即可表示出的坐标,再求出的坐标,即可表示出、,即可得解;【小问1详解】解:设过点且与直线垂直的直线为,则,解得,即,由,解得,即圆心坐标为,所以半径,所以圆的方程为【小问2详解】解:当直线的斜率存在时,设过点的直线为,所以,消去得,设、,则,,所以,所以的中点,由解得,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《简·爱》读书笔记500字10篇
- 2021员工个人工作总结5篇
- 在企业的实习报告模板五篇
- 敬老院志愿活动个人总结五篇
- 庆祝中国人民警察节心得作文
- 电视台实习报告模板集合10篇
- 2024年新型企业食堂租赁及运营合作协议书3篇
- 小学语文教师工作评价
- “两个结合”视域下课程思政融入通识课的路径探索
- 电梯维修工培训资料
- 汉庭酒店经营模式分析
- CRTSIII型板式无砟轨道专项施工施工方法及工艺要求
- 新人教版数学一年级下册第四单元《100以内数的认识》教材解读
- 城市轨道交通接触网概述
- MOOC 外科护理学-中山大学 中国大学慕课答案
- 白山市长白朝鲜族自治县招聘边境村稳边固边公益性岗位人员笔试真题2023
- 特种设备使用管理新版规则
- 中国矿业权评估准则(2011年)
- 人教部编本八年级语文上册第六单元复习课件共26张
- 2024年土地管理法
- 医学统计学:医学统计学课后习题答案
评论
0/150
提交评论