2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题含解析_第1页
2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题含解析_第2页
2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题含解析_第3页
2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题含解析_第4页
2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省广州市广东二师番禺附中高二数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.162.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B.C. D.3.椭圆的左右两焦点分别为,,过垂直于x轴的直线交C于A,B两点,,则椭圆C的离心率是()A. B.C. D.4.函数的导数为()A.B.CD.5.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.7.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增的等差数列,这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.16C.18 D.208.已知数列中,,则()A. B.C. D.9.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.11.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-912.在等差数列中,,且构成等比数列,则公差等于()A.0 B.3C. D.0或3二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线平行,则直线与之间的距离为_____14.在△ABC中,,AB=3,,则________15.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______16.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③,三个条件中任选一个,补充在下面的问题中,并解答.设数列是公比大于0的等比数列,其前项和为,数列是等差数列,其前项和为.已知,,,_____________.(1)请写出你选择条件的序号____________;并求数列和的通项公式;(2)求和.18.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.19.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.20.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围21.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.22.(10分)在数列中,,且成等比数列(1)证明数列是等差数列,并求的通项公式;(2)设数列满足,其前项和为,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B2、D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D3、C【解析】由题可得为等边三角形,可得,即得.【详解】∵过垂直于x轴的直线交椭圆C于A,B两点,,∴为等边三角形,由代入,可得,∴,所以,即,又,解得.故选:C.4、B【解析】由导数运算法则可求出.【详解】,.故选:B.5、A【解析】根据直线垂直求出的范围即可得出.【详解】由直线垂直可得,解得或1,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.6、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.7、B【解析】由题可知这是一个等差数列,前项和,,列式求基本量即可.【详解】设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:B8、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.9、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A10、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.11、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D12、D【解析】根据,且构成等比数列,利用“”求解.【详解】设等差数列的公差为d,因为,且构成等比数列,所以,解得,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由直线平行求参数m,再利用平行直线的距离公式求与之间的距离.【详解】由题设,,即,所以,,所以直线与之间的距离为.故答案为:14、3【解析】计算得出,可得出,再利用平面向量数量积的运算性质可求得结果.【详解】∵,,,∴故答案为:3.15、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:16、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:120三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选①,,;选②,,;选③,,;(2),【解析】(1)选条件①根据等比数列列出方程求出公比得通项公式,再由等差数列列出方程求出首项与公差可得通项公式,选②③与①相同的方法求数列的通项公式;(2)根据等比数列、等差数列的求和公式解计算即可.【小问1详解】选条件①:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为d,,,解得,,.选条件②:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为,,,解得,,选条件③:设等比数列的公比为,,,解得或,,,.设等差数列的公差为,,,解得,【小问2详解】由(1)知,,18、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=219、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】本题考查了椭圆方程的求解,以及直线和椭圆相交时的三角形的面积问题,考查学生的计算能力和数学素养,解答的关键是计算三角形面积时要理清运算的思路,准确计算.20、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.21、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.22、(1)证明见解析;;(2)证明见解析【解析】(1)利用已知条件推出数列是等差数列,其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论