山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省阳泉市阳泉中学2025届高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B.1C. D.2.已知向量分别是直线的方向向量,若,则()A. B.C. D.3.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.4.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.455.已知向量,且与互相垂直,则k=()A. B.C. D.6.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面7.直线与曲线相切于点,则()A. B.C. D.8.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.9.已知椭圆的左、右焦点分别为,,直线过且与椭圆相交于不同的两点,、不在轴上,那么△的周长()A.是定值B.是定值C.不是定值,与直线的倾斜角大小有关D.不是定值,与取值大小有关10.直线的倾斜角为A. B.C. D.11.在中,角所对的边分别为,,,则外接圆的面积是()A. B.C. D.12.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________14.已知函数,,若,,使得,则实数a的取值范围是______15.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.16.双曲线的离心率为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论的单调性;(2)当时,记在区间的最大值为M,最小值为N,求的取值范围.18.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值19.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.20.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值21.(12分)已知直线,直线经过点且与直线平行,设直线分別与x轴,y轴交于A,B两点.(1)求点A和B的坐标;(2)若圆C经过点A和B,且圆心C在直线上,求圆C的方程.22.(10分)某高中招聘教师,首先要对应聘者的简历进行筛选,简历达标者进入面试,面试环节应聘者要回答3道题,第一题为教育心理学知识,答对得4分,答错得0分,后两题为学科专业知识,每道题答对得3分,答错得0分(1)甲、乙、丙、丁、戊来应聘,他们中仅有3人的简历达标,若从这5人中随机抽取3人,求这3人中恰有2人简历达标的概率;(2)某进入面试的应聘者第一题答对的概率为,后两题答对的概率均为,每道题答对与否互不影响,求该应聘者的面试成绩X的分布列及数学期望

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B2、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题3、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A4、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.5、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.6、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D7、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.8、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.9、B【解析】由直线过且与椭圆相交于不同的两点,,且,为椭圆两焦点,根据椭圆的定义即可得△的周长为,则答案可求【详解】椭圆,椭圆的长轴长为,∴△的周长为故选:B10、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题11、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【详解】因为,所以,由余弦定理得,,所以,设外接圆的半径为,由正统定理得,,所以,所以外接圆的面积是.故选:B.12、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于二、填空题:本题共4小题,每小题5分,共20分。13、①.;②.60.【解析】先根据并结合等差数列的定义求出;然后讨论n的取值范围,讨论出分别取1,2,3,4,5的情况,进而求出.【详解】由题意,,n=1时,,满足,时,,于是,,因为,所以.所以,是1为首项,2为公差的等差数列,所以.若,即时,,若,则时,,若,则时,,若,则时,,若,则或22时,,于是,.故答案为:2n-1;60.14、【解析】先求出两函数在上的值域,再由已知条件可得,且,列不等式组可求得结果【详解】由,得,当时,,所以在上单调递减,所以,即,由,得,当时,,所以在上单调递增,所以,即,因为,,使得,所以,解得,故答案为:15、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.16、【解析】∵双曲线的方程为∴,∴∴故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)求得,对参数进行分类讨论,根据导函数函数值的正负即可判断的单调性;(2)根据(1)中所求,求得,以及,再求其取值范围即可.【小问1详解】因为,故可得,令,可得或;当时,,此时在上单调递增;当时,当时,,单调递增;当时,,单调递减;当时,,单调递增;当时,当时,,单调递增;当时,,单调递减;当时,,单调递增.综上所述:当时,在上单调递增;当时,和单调递增,在单调递减;当时,在和单调递增,在单调递减.【小问2详解】由(1)可知:当时,在单调递减,在单调递增又,,故在单调递减,在单调递增.则的最小值;又,当时,的最大值,此时;当时,的最大值,此时,令,则,所以在上单调递减,所以,所以;所以的取值范围为.18、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.19、(1)(2)【解析】(1)利用双曲线的标准方程直接列不等式组,即可求解;(2)先求出直线l的方程为:,利用“设而不求法”和弦长公式求弦长.【小问1详解】要使曲线:为双曲线,只需,解得:,即的取值范围.【小问2详解】当m=0时,曲线C的方程为,可得,所以右焦点,由题意可得直线l的方程为:.设,联立整理可得:,可得:所以弦长,所以20、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.21、(1),;(2).【解析】(1)由直线平行及所过的点,应用点斜式写出直线方程,进而求A、B坐标.(2)由(1)求出垂直平分线方程,并联立直线求圆心坐标,即可求圆的半径,进而写出圆C的方程.【小问1详解】由题设,的斜率为,又直线与直线平行且过,所以直线为,即,令,则;令,则.所以,.【小问2详解】由(1)可得:垂直平分线为,即,联立,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论