版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市江津中学、合川中学等七校高数学高一上期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°2.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.3.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.4.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.5.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.166.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.7.的外接圆的圆心为O,半径为1,若,且,则的面积为()A. B.C. D.18.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.9.已知,则的值是A. B.C. D.10.已知,,且,,,那么的最大值为()A. B.C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.12.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________13.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.14.函数f(x)=log2(x2-5),则f(3)=______15.函数恒过定点为__________16.已知的定义域为,那么a的取值范围为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.18.函数=的部分图像如图所示.(1)求函数的单调递减区间;(2)将的图像向右平移个单位,再将横坐标伸长为原来的倍,得到函数,若在上有两个解,求的取值范围.19.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前一天观测得到该微生物的群落单位数量分别为8,14,26.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型:①;②,其中且.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测得到的群落单位数量分别为50和98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过500.20.,不等式的解集为(1)求实数b,c的值;(2)时,求的值域21.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B2、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.3、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.4、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D5、D【解析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D6、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A7、B【解析】由,利用向量加法的几何意义得出△ABC是以A为直角的直角三角形,又|,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解【详解】由于,由向量加法的几何意义,O为边BC中点,∵△ABC的外接圆的圆心为O,半径为1,∴三角形应该是以BC边为斜边的直角三角形,∠BAC=,斜边BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故选B.【点睛】本题主要考查了平面向量及应用,三角形面积的求法,属于基础题8、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单9、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角10、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.12、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]13、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点14、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题15、【解析】当时,,故恒过点睛:函数图象过定点问题,主要有指数函数过定点,对数函数过定点,幂函数过点,注意整体思维,整体赋值求解16、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.18、(1);(2).【解析】(1)先求出w=π,再根据图像求出,再求函数的单调递减区间.(2)先求出=,再利用数形结合求a的取值范围.【详解】(1)由题得.所以所以.令所以函数的单调递减区间为.(2)将的图像向右平移个单位得到,再将横坐标伸长为原来的倍,得到函数=,若在上有两个解,所以,所以所以所以a的取值范围为.【点睛】本题主要考查三角函数解析式的求法和单调区间的求法,考查三角函数的图像变换和三角方程的有解问题,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.19、(1)函数模型①,函数模型②(2)函数模型②更合适,从第8天开始该微生物的群落单位数量超过500【解析】(1)可通过已知条件给到的数据,分别带入函数模型①和函数模型②,列出方程组求解出参数即可完成求解;(2)将第4天和第5天得到的数据与第(1)问计算出的函数模型①和函数模型②的表达式计算出的第4天和第5天的模拟数据对比,即可做出判断并计算.【小问1详解】对于函数模型①:把及相应y值代入得解得,所以.对于函数模型②:把及相应y值代入得解得,所以.【小问2详解】对于模型①,当时,,当时,,故模型①不符合观测数据;对于模型②,当时,,当时,,符合观测数据,所以函数模型②更合适要使,则,即从第8天开始该微生物的群落单位数量超过500.20、(1)(2)【解析】(1)由题意,1和3是方程的两根,利用韦达定理即可求解;(2)利用二次函数的单调性即可求解.【小问1详解】解:由题意,1和3是方程的两根,所以,解得;【小问2详解】解:由(1)知,,所以当时,单调递减,当时,单调递增,所以,,所以值域为.21、(1)证明见解析;(2)8.【解析】(1)由平行四边形的性质及勾股定理可得,再由面面垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024家具工程安装承包协议书范本
- 2024工程承包简单的合同范本
- 2024年专业厨师岗位聘用协议模板版
- 江南大学《病理学与病理生理学》2021-2022学年第一学期期末试卷
- 基于2024年度AI算法的智能家居系统开发合同2篇
- 2024全新地砖采购合同下载
- 2024工厂临时用工协议协议版B版
- 教育基金会经济合同审批单
- 暨南大学《法语口译理论与实践Ⅱ》2021-2022学年第一学期期末试卷
- 济宁学院《健美操》2021-2022学年第一学期期末试卷
- 话剧剧务的基础知识
- 人教版小学数学二年级上册口算题卡大全
- 2024工程类履约保函承诺书完整范本
- 驾校安全生产实施方案(2篇)
- 《土木工程制图》课程题库试题及答案
- (完整版)三大改造课件
- 《2.6蚕的一生》说课稿、教案、教学设计与同步练习
- 路缘石安装安全技术交底
- 移动应用案例教学智慧树知到期末考试答案2024年
- 电大财务大数据分析编程作业5
- MOOC 人工智能:模型与算法-浙江大学 中国大学慕课答案
评论
0/150
提交评论