版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西汉中市汉台区县高二上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知过点的直线与圆相切,且与直线平行,则()A.2 B.1C. D.2.,则()A. B.C. D.3.已知数列满足,且,那么()A. B.C. D.4.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.5.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.6.抛物线上的一点到其焦点的距离等于()A. B.C. D.7.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.8.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.9.已知,,若,则()A.9 B.6C.5 D.310.“,”的否定是A., B.,C., D.,11.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离12.已知圆,过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,若O为坐标原点,则最大值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知圆:,:.则这两圆的连心线方程为_________(答案写成一般式方程)14.如图茎叶图记录了A、两名营业员五天的销售量,若A的销售量的平均数比的销售量的平均数多1,则A营业员销售量的方差为___________.15.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.16.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点.(1)证明:PB∥面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.18.(12分)等比数列中,,(1)求的通项公式;(2)记为的前n项和.若,求m的值19.(12分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求20.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程21.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项22.(10分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据垂直关系设切线方程,再根据圆心到切线距离等于半径列式解得结果.【详解】因为切线与直线平行,所以切线方程可设为因为切线过点P(2,2),所以因为与圆相切,所以故选:C2、B【解析】求出,然后可得答案.【详解】,所以故选:B3、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D4、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.5、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A6、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C7、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.8、C【解析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.9、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.10、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.11、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A12、C【解析】由题意,点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,进而可得,所以点P的轨迹为以C为圆心,半径为3的圆,从而即可求解.【详解】解:由题意,圆,所以圆C是以为圆心,半径为5的圆,因为过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为5∶4,所以点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,所以由弦长公式有,所以点P的轨迹为以C为圆心,半径为3的圆,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出两圆的圆心坐标,再利用两点式求出直线方程,再化成一般式即可【详解】解:圆,即,两圆的圆心为:和,这两圆的连心线方程为:,即故答案为:14、44【解析】先根据题意求出x的值,进而利用方差公式求出A营业员销售量的方差.【详解】由A的平均数比的平均数多1知,A的总量比的总量多5,所以,A的平均数为17,方差为.故答案为:4415、【解析】利用正弦定理求得甲驱逐舰与乙护卫舰的距离.【详解】,设甲乙距离,由正弦定理得.故答案为:16、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设BD交AC于点O,连结EO,根据三角形中位线证明BP∥EO即可;(2)根据三棱锥P-ABD的体积求出AB长度,过A作AH⊥BP于H,可证AH即为要求的距离,根据直角三角形等面积法即可求AH长度.【小问1详解】设BD交AC于点O,连结EO.∵ABCD为矩形,∴O为BD的中点.又E为PD的中点,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小问2详解】,又V=,可得AB=2.在面PAB内过点A作交于.由题设易知平面,∴故平面,由等面积法得:,∴点A到平面的距离为.18、(1)或;(2)5.【解析】(1)设的公比为q,解方程即得解;(2)分两种情况解方程即得解.【小问1详解】解:设的公比为q,由题设得由已知得,解得(舍去),或故或【小问2详解】解:若,则由,得,解得若,则由,得,因为,所以此方程没有正整数解综上,19、(1),(2)4【解析】(1)将M坐标代入方程即可;(2)联立直线l与抛物线方程得到A、B的横坐标,再利用焦半径公式求出即可.【小问1详解】将代入,得,解得,所以【小问2详解】由(1)得抛物线方程为,直线l的方程为,联立消y得,解得或,因为A在第一象限,所以,所以,,所以20、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或21、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为22、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年独家销售授权协议模板2篇
- 2024-2025学年八年级机械运动讲义+练习(含答案)
- 模板及脚手架支撑体系工程施工设计方案2018年
- 2024年融资配对服务合同3篇
- 脊柱科的中医护理
- 陕旅版六年级英语上册教案导学案unit5-8单元教学设计
- 纪律作风培训
- 2024年版商场摊位续租协议2篇
- 员工职业健康防护措施
- 简单医疗知识安全培训
- 2024年上海奉贤投资(集团)限公司招聘3人历年(高频重点提升专题训练)共500题附带答案详解
- 各种常用管道管径的表示方法及对照表正式版
- 医学检验技术专业《生理学》课程标准
- JT-T-816-2011机动车维修服务规范
- 《孟子》三章-2024年中考语文课内外文言文对比阅读能力拓展训练(解析版)
- 广东省广州市2024年中考英语模拟试卷(含答案)
- 文献信息检索与利用智慧树知到期末考试答案章节答案2024年海南大学
- 园艺植物组织培养-形考作业2-国开-参考资料
- HYT 069-2005 赤潮监测技术规程
- 审计报告中无所有者权益变动表书面声明
- TSGD7004-2010压力管道定期检验规则-公用管道
评论
0/150
提交评论