2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题含解析_第1页
2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题含解析_第2页
2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题含解析_第3页
2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题含解析_第4页
2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古呼和浩特市第六中学数学高三上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若(),,则()A.0或2 B.0 C.1或2 D.12.已知是偶函数,在上单调递减,,则的解集是A. B.C. D.3.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.844.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.5.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.56.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.47.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.89.若函数在时取得最小值,则()A. B. C. D.10.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④11.已知,若,则等于()A.3 B.4 C.5 D.612.的展开式中的系数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.14.在边长为的菱形中,点在菱形所在的平面内.若,则_____.15.给出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,结果为的式子的序号是_____.16.记为数列的前项和,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.18.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.19.(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.20.(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.21.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.22.(10分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.2、D【解析】

先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.3、B【解析】

由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【详解】解:因为,,所以,解可得,,,则.故选:B.【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.4、C【解析】

由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.5、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.6、A【解析】

根据题意依次计算得到答案.【详解】根据题意知:,,故,,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.7、B【解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.8、C【解析】

解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.9、D【解析】

利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.10、C【解析】

根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.11、C【解析】

先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.12、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【详解】设底面边长为,则斜高为,即此四棱锥的高为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【点睛】本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.14、【解析】

以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设得,解得,,或,显然得出的是定值,取则,.故答案为:.【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.15、①②③【解析】

由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案为:①②③【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.16、-254【解析】

利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.【详解】由已知,得,即,所以又,即,,所以是以-4为首项,2为公比的等比数列,所以,即,所以。故答案为:【点睛】本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(ⅰ)证明见解析(ⅱ)(2)存在,【解析】

(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)(ⅰ)证明:连接交于点,连接,,因为为线段的中点,所以,因为,所以因为∥所以四边形为平行四边形.所以又因为,所以又因为平面,平面,所以平面.(ⅱ)解:如图,在平行四边形中因为,,所以以为原点建立空间直角坐标系则,,,所以,,,平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能力,属于中档题.18、(1)证明见解析;(2)【解析】

(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)取AB的中点O,连接,,在Rt△和Rt△ADB中,AB=2,则=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O⊂平面,所以平面⊥平面DAB(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值为.【点睛】本题考查了面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19、(1)(2)或【解析】

(1)根据题意计算得到,,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题目转化为是解题的关键.20、(1)(2)1008【解析】

(1)用基本量求出首项和公差,可得通项公式;(2)用裂项相消法求得和,然后解不等式可得.【详解】解:(1)由题得,即解得或因为数列为各项均为整数,所以,即(2)令所以即,解得所以的最大值为1008【点睛】本题考查等差数列的通项公式、前项和公式,考查裂项相消法求数列的和.在等差数列和等比数列中基本量法是解题的基本方法.21、(Ⅰ).(Ⅱ).【解析】

详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论