![湖南省岳阳市2025届高二上数学期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view8/M00/10/2C/wKhkGWcZMteAAZmAAAHy2Jwo6R4886.jpg)
![湖南省岳阳市2025届高二上数学期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view8/M00/10/2C/wKhkGWcZMteAAZmAAAHy2Jwo6R48862.jpg)
![湖南省岳阳市2025届高二上数学期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view8/M00/10/2C/wKhkGWcZMteAAZmAAAHy2Jwo6R48863.jpg)
![湖南省岳阳市2025届高二上数学期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view8/M00/10/2C/wKhkGWcZMteAAZmAAAHy2Jwo6R48864.jpg)
![湖南省岳阳市2025届高二上数学期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view8/M00/10/2C/wKhkGWcZMteAAZmAAAHy2Jwo6R48865.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市2025届高二上数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.2.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.483.已知函数,的导函数,的图象如图所示,则的极值情况为()A.2个极大值,1个极小值 B.1个极大值,1个极小值C.1个极大值,2个极小值 D.1个极大值,无极小值4.设抛物线C:的焦点为,准线为.是抛物线C上异于的一点,过作于,则线段的垂直平分线()A.经过点 B.经过点C.平行于直线 D.垂直于直线5.在空间四边形中,,,,且,则()A. B.C. D.6.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.37.已知数列满足,且,为其前n项的和,则()A. B.C. D.8.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设是周期为2的奇函数,当时,,则()A. B.C. D.10.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.11.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.12.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.16二、填空题:本题共4小题,每小题5分,共20分。13.设,则动点P的轨迹方程为________14.一支车队有10辆车,某天下午依次出发执行运输任务.第一辆车于14时出发,以后每间隔10分钟发出一辆车.假设所有的司机都连续开车,并都在18时停下来休息.截止到18时,最后一辆车行驶了____小时,如果每辆车行驶的速度都是60km/h,这个车队各辆车行驶路程之和为______千米15.已知定点,点在直线上运动,则,两点的最短距离为________16.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.18.(12分)已知圆(1)求圆心的坐标和圆的面积;(2)若直线与圆相交于两点,求弦长19.(12分)已知数列的前n项和,递增等比数列满足,且.(1)求数列,的通项公式;(2)求数列的前n项和为.20.(12分)已知抛物线上的点到焦点的距离为6(1)求抛物线的方程;(2)设为抛物线的焦点,直线与抛物线交于,两点,求的面积21.(12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;22.(10分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D2、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.3、B【解析】根据图象判断的正负,再根据极值的定义分析判断即可【详解】由,得,令,由图可知的三个根即为与的交点的横坐标,当时,,当时,,即,所以为的极大值点,为的极大值,当时,,即,所以为的极小值点,为的极小值,故选:B4、A【解析】依据题意作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即可求解.【详解】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:A.5、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.6、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C7、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.8、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.9、A【解析】由周期函数得,再由奇函数的性质通过得结论【详解】∵函数是周期为2的周期函数,∴,而,又函数为奇函数,∴.故选A【点睛】本题考查函数的周期性与奇偶性,属于基础题.此类题型,求函数值时,一般先用周期性化自变量到已知区间关于原点对称的区间,然后再由奇函数性质求得函数值10、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.11、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B12、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线的定义可得答案.【详解】因为,所以动点P的轨迹是焦点为A,B,实轴长为4的双曲线的上支.因为,所以,所以动点P的轨迹方程为故答案为:.14、①.2.5####②.1950【解析】通过分析,求出最后一辆车的出发时间,从而求出最后一辆车的行驶时间,这10辆车的行驶路程可以看作等差数列,利用等差数列求和公式进行求解.【详解】因为,所以最后一辆车出发时间为15时30分,则最后一辆车行驶时间为18-15.5=2.5小时,第一辆车行程为km,且从第二辆车开始,每辆车都比前一辆少走km,这10辆车的行驶路程可以看作首项为240,公差为-10的等差数列,则10辆车的行程路程之和为(km).故答案为:2.5,195015、【解析】线段最短,就是说的距离最小,此时直线和直线垂直,可先求的斜率,再求直线的方程,然后与直线联立求交点即可【详解】定点,点在直线上运动,当线段最短时,就是直线和直线垂直,的方程为:,它与联立解得,所以的坐标是,所以,故答案为:16、【解析】设出动点,根据已知条件得到关于的方程.【详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.18、(1)圆心,面积为;(2).【解析】(1)将圆化为标准方程,进而求出圆心、半径和圆的面积;(2)求出圆心到直线的距离,进而通过勾股定理求得答案.【小问1详解】由已知,得:,所以圆心,半径为,面积为.【小问2详解】圆心到直线距离为,则.19、(1),(2)【解析】(1)先求,再由求出,设等比数列的公比为q,由条件可得,解出结合条件可得答案.(2)由(1)可得,利用错位相减法可求【小问1详解】,当时,,也满足上式,∴,则.设等比数列的公比为q,由得,解得或.因为是递增等比数列,所以,.【小问2详解】①①①②:∴20、(1)(2)【解析】(1)根据焦半径公式可求,从而可求抛物线的方程.(2)求出的长度后可求的面积.【小问1详解】因为,所以,故抛物线方程为:.【小问2详解】设,且,由可得,故或,故,故,故,而到直线的距离为,故的面积为21、(1)证明见详解(2)【解析】(1)将线面平行转化为面面平行,由已知易证;(2)延长相交与点F,利用等体积法求点A到平面PCE,然后由可得.【小问1详解】四边形ABCD为正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小问2详解】延长相交与点F,因为,所以分别为的中点.记点到平面PCF为d,直线AB与平面PCE所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江西师范高等专科学校高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年武汉电力职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 航空运输合同集锦
- 人工智能算法开发与应用合同
- 幼儿园植树节策划方案2021【五篇】
- 桉树造林工程承包合同书
- 新企业之间借款合同范本
- 采购法务与合同管理1
- 咨询培训服务合同模板
- 校车租赁合同书
- 2025-2030年中国清真食品行业运行状况及投资发展前景预测报告
- 广东省茂名市电白区2024-2025学年七年级上学期期末质量监测生物学试卷(含答案)
- 《教育强国建设规划纲要(2024-2035年)》全文
- 2025年河南洛阳市孟津区引进研究生学历人才50人历年高频重点提升(共500题)附带答案详解
- 临床提高脓毒性休克患者1h集束化措施落实率PDCA品管圈
- 汽车车身密封条设计指南
- 2024建安杯信息通信建设行业安全竞赛题库(试题含答案)
- JBT 14727-2023 滚动轴承 零件黑色氧化处理 技术规范 (正式版)
- 术后谵妄及护理
- 医药行业的市场营销与渠道拓展
- 压力管道安全技术监察规程-工业管道
评论
0/150
提交评论