版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖北省孝感市七校教学联盟高三下期末教学检测试题数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A. B. C. D.2.已知满足,,,则在上的投影为()A. B. C. D.23.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A. B. C. D.4.若复数满足,其中为虚数单位,是的共轭复数,则复数()A. B. C.4 D.55.已知,,若,则实数的值是()A.-1 B.7 C.1 D.1或76.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.97.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.8.已知定义在上的偶函数,当时,,设,则()A. B. C. D.9.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()A. B.C. D.10.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交11.复数的共轭复数为()A. B. C. D.12.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则_________.14.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.15.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.16.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列中,.(1)求的通项公式;(2)设,记为数列前项的和,若,求.18.(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,,且,证明.19.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.20.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.21.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.22.(10分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据新运算的定义分别得出◆2020和2020★2018的值,可得选项.【详解】由()★★,得(+2)★★,又★,所以★,★,★,,以此类推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此类推,◆2020,所以(◆2020)(2020★2018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.2.A【解析】
根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.3.D【解析】
根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,,则,解得:设,,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.4.D【解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.【详解】解:复数z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故选D.【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.5.C【解析】
根据平面向量数量积的坐标运算,化简即可求得的值.【详解】由平面向量数量积的坐标运算,代入化简可得.∴解得.故选:C.【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.6.D【解析】
根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,
函数的周期为3,
∵当时,,
令,则,解得或1,
又∵函数是定义域为的奇函数,
∴在区间上,有.
由,取,得,得,
∴.
又∵函数是周期为3的周期函数,
∴方程=0在区间上的解有共9个,
故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.7.A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.8.B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.9.A【解析】
设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,,其中,,即关于轴对称故选:【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.10.D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.11.D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.12.D【解析】
按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
因为,所以.因为,所以,又,所以,所以..14.9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.15.【解析】
根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.16.1【解析】
根据均值的定义计算.【详解】由题意,∴.故答案为:1.【点睛】本题考查均值的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】
(1)由基本量法求出公差后可得通项公式;(2)由等差数列前项和公式求得,可求得.【详解】解:(1)设的公差为,由题设得因为,所以解得,故.(2)由(1)得.所以数列是以2为首项,2为公比的等比数列,所以,由得,解得.【点睛】本题考查求等差数列的通项公式和等比数列的前项和公式,解题方法是基本量法.18.(1)若,则在定义域内递增;若,则在上单调递增,在上单调递减(2)证明见解析【解析】
(1),分,讨论即可;(2)由题可得到,故只需证,,即,采用换元法,转化为函数的最值问题来处理.【详解】由已知,,若,则在定义域内递增;若,则在上单调递增,在上单调递减.(2)由题意,对求导可得从而,是的两个变号零点,因此下证:,即证令,即证:,对求导可得,,,因为故,所以在上单调递减,而,从而所以在单调递增,所以,即于是【点睛】本题考查利用导数研究函数的单调性以及证明不等式,考查学生逻辑推理能力、转化与化归能力,是一道有一定难度的压轴题.19.(1);(2).【解析】
(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.20.(1);(2)详见解析;(3)详见解析.【解析】
(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2)当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:.是各项不为零的常数列,则,则由,及得,当时,,两式作差,可得.当时,满足上式,则;证明:,当时,,两式相减得:即.即.又,,即.当时,,两式相减得:.数列从第二项起是公差为的等差数列.又当时,由得,当时,由,得.故数列是公差为的等差数列;证明:由,当时,,即,,,即,即,当时,即.故从第二项起数列是等比数列,当时,..另外,由已知条件可得,又,,因而.令,则.故对任意的恒成立.【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.21.(1)在为增函数;证明见解析(2)【解析】
(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【点睛】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转化思想、分类与整合思想、函数与方程思想,考查了学生的逻辑推理和运算求解能力,属于难题.22.(1),;(2).【解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权购买合同的版权描述及购买价格
- 2024融资居间合同
- 二零二四年度物业服务合同:某高端住宅小区的物业管理细节
- 2024年度企业培训及人才输出定制合同
- 二零二四年度设备安装调试合同
- 2024年度中国新能源汽车销售代理协议
- 2024年度社交平台与内容提供商版权许可协议
- 二零二四年度石料厂财务审计合同协议书
- 2024年度旅游景点开发与管理合作协议
- 装潢安全合同范本
- 2023《住院患者身体约束的护理》团体标准解读PPT
- 跨国化妆品企业在中国本土化战略研究分析-以雅诗兰黛公司为例 工商管理专业
- 2024年度家庭医生签约服务培训课件
- 医院陪护服务投标方案(技术方案)
- 专病数据模块及数据库建设需求
- 一老一小交通安全宣传
- 重点部位感染与预防控制
- 高校快递包装回收现状分析及对策-以广东省中山市三大高校为例
- 新民事诉讼书范文追债通用21篇
- 国家开放大学《Python语言基础》实验3:超市数据统计分析参考答案
- 供应室院感培训课件
评论
0/150
提交评论