第21章一元二次方程(单元提升卷)_第1页
第21章一元二次方程(单元提升卷)_第2页
第21章一元二次方程(单元提升卷)_第3页
第21章一元二次方程(单元提升卷)_第4页
第21章一元二次方程(单元提升卷)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第21章一元二次方程(单元提升卷)(满分100分,完卷时间90分钟)考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共10小题)1.下列方程中是一元二次方程的是()A.xy+2=1 B. C.x2=0 D.ax2+bx+c=0【分析】根据一元二次方程的定义:含有一个未知数,并且所含未知数的项的次数是2次的整式方程,即可判断答案.【解答】解:根据一元二次方程的定义:A、是二元二次方程,故本选项错误;B、是分式方程,不是整式方程,故本选项错误;C、是一元二次方程,故本选项正确;D、当abc是常数,a≠0时,方程才是一元二次方程,故本选项错误;故选:C.【点评】本题考查了对一元二次方程和一元一次方程的理解,关键是知道一元二次方程含有3个条件:①整式方程,②含有一个未知数,③所含未知数的项的次数是1次.2.如果2是方程x2﹣x+c=0的一个根,则常数c的值是()A.1 B.2 C.﹣1 D.﹣2【分析】把x=2代入x2﹣x+c=0得关于c的方程,然后解此方程即可.【解答】解:把x=2代入x2﹣x+c=0得4﹣2+c=0,解得x=﹣2.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A. B. C. D.【分析】此题考查了配方法解一元二次方程,要注意解题步骤,把左边配成完全平方式,右边化为常数.【解答】解:∵x2+px+q=0∴x2+px=﹣q∴x2+px+=﹣q+∴(x+)2=故选:B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.方程x2﹣4x+9=0的根的情况是()A.有两个不相等实根 B.有两个相等实根 C.无实根 D.以上三种情况都有可能【分析】根据方程各项系数结合根的判别式Δ=b2﹣4ac,即可得出Δ=﹣4<0,进而即可得出方程无解.【解答】解:在方程x2﹣4x+9=0中,Δ=﹣4×1×9=﹣4<0,∴该方程没有实数根.故选:C.【点评】本题考查了根的判别式,根据根的判别式找出Δ=﹣4<0是解题的关键.5.等腰三角形两边长为方程x2﹣7x+10=0的两根,则它的周长为()A.12 B.12或9 C.9 D.7【分析】利用因式分解法求出已知方程的解,即可确定三角形周长.【解答】解:方程分解因式得:(x﹣2)(x﹣5)=0,解得:x=2或x=5,当2为腰时,三边长分别为:2,2,5,不能构成三角形,舍去;当2为底时,三边长为5,5,2,周长为5+5+2=12.故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,三角形的三边关系,以及等腰三角形的性质,熟练掌握运算法则是解本题的关键.6.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40 C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+40【分析】设增加了x行或列,根据体操队伍人数不变列出方程即可.【解答】解:设增加了x行或列,根据题意得(8+x)(10+x)=8×10+40.故选:D.【点评】本题考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴Δ=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.8.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮转发后,共有931人参与了此次活动,则方程列为()A.(1+n)2=931 B.n(n﹣1)=931 C.1+n+n2=931 D.n+n2=931【分析】设邀请了n个好友转发倡议书,第一轮转发了n个人,第二轮转发了n2个人,根据两轮转发后,共有931人参与列出方程即可.【解答】解:由题意,得n2+n+1=931,故选:C.【点评】本题考查了一元二次方程的应用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数,根据两轮总人数为931人建立方程是关键.9.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8% B.64.2%(1+2x)=70.8% C.(1+64.2%)(1+x)2=1+70.8% D.(1+64.2%)(1+2x)=1+70.8%【分析】设2017年到2019年中国石油对外依存度平均年增长率为x,根据:2017年石油对外依存度×(1+增长率)2=2019年石油对外依存度,列出方程即可.【解答】解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.故选:A.【点评】本题主要考查由实际问题抽象出一元二次方程,由题意准确抓住相等关系并据此列出方程是解题的关键.10.已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣ B.0, C.﹣1,2 D.1,﹣2【分析】根据一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,可得关于a的方程,解方程可求a的值,将a的值代入方程(a+1)x2+ax﹣a2+a+2=0求解即可.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,∴a2﹣a﹣2=0,(a+1)(a﹣2)=0,解得a1=﹣1(舍去),a2=2,把a=2代入(a+1)x2+ax﹣a2+a+2=0得3x2+2x﹣4+2+2=0,解得x1=0,x2=﹣.故选:A.【点评】考查了相反数、一元二次方程的解,关键是根据相反数的定义得到关于a的方程,解方程求得a的值.二.填空题(共8小题)11.方程2x2﹣1=的二次项系数是2,一次项系数是﹣,常数项是﹣1.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.【点评】要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.12.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴Δ=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k≤1且k≠0.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.13.方程x2﹣3=0的根是x=±.【分析】方程变形后,利用平方根定义开方即可求出x的值.【解答】解:方程整理得:x2=3,开方得:x=±,故答案为:x=±【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.14.设x1,x2是方程2x2﹣3x﹣3=0的两个实数根,则的值为﹣.【分析】利用根与系数的关系求出两根之和与两根之积,所求式子通分并利用同分母分式的加法法则计算,变形后将各自的值代入计算即可求出值.【解答】解:∵x1,x2是方程2x2﹣3x﹣3=0的两个实数根,∴x1+x2=,x1x2=﹣,则原式=====﹣.故答案为:﹣【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为x(x﹣1)=2×5.【分析】关系式为:球队总数×每支球队需赛的场数÷2=2×5,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.16.已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是4.【分析】变形后分解因式,得出两个方程,求出即可.【解答】解:(x2+y2)(x2+y2﹣1)=12,(x2+y2)2﹣(x2+y2)﹣12=0,(x2+y2+3)(x2+y2﹣4)=0,x2+y2+3=0,x2+y2﹣4=0,x2+y2=﹣3,x2+y2=4,∵不论x、y为何值,x2+y2不能为负数,∴x2+y2=4,故答案为:4.【点评】本题考查了解一元二次方程的应用,能得出两个方程是解此题的关键.17.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有10队参加比赛.【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程求解即可.【解答】解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,整理,得:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不合题意舍去),所以,这次有10队参加比赛.答:这次有10队参加比赛.【点评】本题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以2.18.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,所列方程是560(1﹣x)2=315.【分析】设每次降价的百分率为x,根据题意可得,560×(1﹣降价的百分率)2=315,据此列方程即可.【解答】解:设每次降价的百分率为x,由题意得,560(1﹣x)2=315.故答案为:560(1﹣x)2=315.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.三.解答题(共8小题)19.解方程:x2+2x﹣5=0.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=5+1,∴(x+1)2=6,∴x+1=±,∴x=﹣1±.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.解方程:2x2﹣7x+3=0.【分析】本题可以运用因式分解法解方程.因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.【解答】解:原方程可变形为(2x﹣1)(x﹣3)=0∴2x﹣1=0或x﹣3=0,∴.【点评】根据方程的特点,灵活选择解方程的方法,一般能用因式分解法的要用因式分解法,难以用因式分解法的再用公式法.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)根据判别式的意义得到Δ=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.【解答】解:(1)根据题意得Δ=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根与系数的关系.22.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【分析】本题可设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值,并且3轮后共有(1+x)3台被感染,比较该数同700的大小,即可作出判断.【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.【点评】本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.23.果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.【分析】(1)设出平均每次下调的百分率,根据从15元下调到9.6列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.【解答】解(1)设平均每次下调的百分率为x.由题意,得15(1﹣x)2=9.6.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小刘选择方案一购买更优惠.理由:方案一所需费用为:9.6×0.9×3000=25920(元),方案二所需费用为:9.6×3000﹣400×3=27600(元).∵25920<27600,∴小刘选择方案一购买更优惠.【点评】本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.24.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?【分析】假设出修建的路宽应x米,利用图形的平移法,将两条道路平移的耕地两边,即可列出方程,进一步求出x的值即可.【解答】解:设修建的路宽应x米,可列出方程:(20﹣x)(30﹣x)=551,整理得:x2﹣50x+49=0,解得:x1=1米,x2=49米(不合题意舍去),答:修建的道路宽为1米.【点评】此题主要考查了一元二次方程的应用,对于修路问题最简单的方法是平移道路进而列出等式方程从而解决问题.25.商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售减少库存,决定采取适当的降价措施,经调查发现,如果一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论