版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题5.3平行线中的常见模型【典例1】如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图2,过P作PE//(1)请你按小明的思路,写出∠APC度数的求解过程;(2)如图3,AB//CD,点P在直线BD上运动,记∠PAB=∠α,①当点P在线段BD上运动时,则∠APC与∠α、∠β之间有何数量关系?请说明理由;②若点P不在线段BD上运动时,请直接写出∠APC与∠α、∠β之间的数量关系.【思路点拨】(1)过P作PE//(2)①过P作PE//AB②分P在BD延长线上和P在DB延长线上两种情况进行讨论,结合平行线的性质即可得出答案.【解题过程】解:(1)如图2,过P作PE∵AB//∴PE//∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)①∠APC=∠α+∠β,理由:如图3,过P作PE//∵AB//∴AB//∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;②∠APC=∠α−∠β如备用图1,当P在BD延长线上时,∠APC=∠α−∠β;理由:如备用图1,过P作PG//∵AB//∴AB//∴∠α=∠APG,∠β=∠CPG,∴∠APC=∠APG−∠CPG=∠α−∠β;如备用图2所示,当P在DB延长线上时,∠APC=∠β−∠α;理由:如备用图2,过P作PG//∵AB//∴AB//∴∠α=∠APG,∠β=∠CPG,∴∠APC=∠CPG−∠APG=∠β−∠α;综上所述,∠APC=∠α−∠β1.(2021·全国·九年级专题练习)在图中,若AB//CD,又得到什么结论?【思路点拨】根据图①可得∠E=∠B+∠D,根据图②可得∠B+∠F+∠D=∠E+∠G,即可根据规律得出题目的结论.【解题过程】解:①如图:过点E作EF//∵AB//CD,EF//∴AB//∴∠ABE=∠BEF,∠CDE=∠DEF,∴∠E=∠B+∠D;②如图,过E点作EH//AB,过F点作FJ//AB∵EH//∴AB//∴∠ABE=∠BEH,∠HEF=∠EFJ,∠JFG=∠FGI,∠IGD=∠GDC,∴∠ABE+∠EFJ+∠JFG+∠GDC=∠BEH+∠HEF+∠FGI+∠IGD,即∠B+∠F+∠D=∠E+∠G;③如图:,根据以上规律可得:∠B+∠F2.(2021春·广东东莞·七年级东莞市长安实验中学校考期中)如图,已知AB∥CD.(1)如图1所示,∠1+∠2=;(2)如图2所示,∠1+∠2+∠3=;并写出求解过程.(3)如图3所示,∠1+∠2+∠3+∠4=;(4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n=.【思路点拨】(1)由两直线平行,同旁内角互补,可得答案;(2)过点E作AB的平行线,转化成两个图1,同理可得答案;(3)过点E,点F分别作AB的平行线,转化成3个图1,可得答案;(4)由(2)(3)类比可得答案.【解题过程】解:(1)如图1,∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补).故答案为:180°;(2)如图2,过点E作AB的平行线EF,∵AB∥CD,∴AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)如图3,过点E,点F分别作AB的平行线,类比(2)可知∠1+∠2+∠3+∠4=180°×3=540°,故答案为:540°;(4)如图4由(2)和(3)的解法可知∠1+∠2+∠3+∠4+…+∠n=(n1)×180°,故答案为:(n1)×180°.3.(2021春·广东河源·七年级河源市第二中学校考期中)已知直线l1//l2,A是l1上的一点,B是l2上的一点,直线l3和直线l1,l2交于C和D,直线CD上有一点P.(1)如果P点在C,D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C,D两点的外侧运动时(P点与C,D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?(请直接写出答案,不需要证明)【思路点拨】(1)过点P作PE//l1,由“平行于同一条直线的两直线平行”可得出PE//l1//(2)按点P的两种情况分类讨论:①当点P在直线l1上方时;②当点P在直线l2下方时,同理(1)可得∠PAC=∠APE、【解题过程】解:(1)∠PAC+∠PBD=∠APB.过点P作PE//l∵PE//l1,∴PE//l∴∠PAC=∠APE,∠PBD=∠BPE,∵∠APB=∠APE+∠BPE,∴∠PAC+∠PBD=∠APB.(2)结论:当点P在直线l1上方时,∠PBD−∠PAC=∠APB;当点P在直线l2下方时,①当点P在直线l1上方时,如图2所示.过点P作PE//∵PE//l1,∴PE//l∴∠PAC=∠APE,∠PBD=∠BPE,∵∠APB=∠BPE−∠APE,∴∠PBD−∠PAC=∠APB.②当点P在直线l2下方时,如图3所示.过点P作PE//∵PE//l1,∴PE//l∴∠PAC=∠APE,∠PBD=∠BPE,∵∠APB=∠APE−∠BPE,∴∠PAC−∠PBD=∠APB.4.(2022春·山东聊城·七年级统考阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.【思路点拨】(1)过点M作MN∥AB,由AB∥CD,可知MN∥AB∥(2)由(1)可知∠AGM+∠CHM=∠M.再由∠CHM=∠GHM,∠AGM=∠HGQ,可知:∠M=∠HGQ+∠GHM,利用三角形内角和是180°,可得【解题过程】(1)解:如图:过点M作MN∥∴MN∥∴∠AGM=∠GMN,∠CHM=∠HMN,∵∠M=∠GMN+∠HMN,∴∠M=(2)解:∠GQH=180°−∠M,理由如下:如图:过点M作MN∥由(1)知∠M=∵HM平分∠GHC,∴∠CHM=∠GHM,∵∠AGM=∠HGQ,∴∠M=∠HGQ+∠GHM,∵∠HGQ+∠GHM+∠GQH=180°,∴∠GQH=180°−∠M.5.(2022春·广东东莞·七年级东莞市光明中学校考期中)阅读下面内容,并解答问题.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)求证:EG⊥FG;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF的度数为.②如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.【思路点拨】(1)利用平行线的性质解决问题即可;(2)①利用基本结论∠EMF=∠BEM+∠MFD求解即可;②利用基本结论∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,求解即可.【解题过程】(1)证明:如图,过G作GH∥AB,∵AB∥CD,∴AB∥GH∥CD,∴∠∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠GEB=12∠BEF∴∠GEB+∠GFD=1在ΔEFG中,∠GEF+∠GFE+∠G=180°∴∠EGF=∠GEB+∠GFD=90°,∴EG⊥FG;(2)解:①如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=1∴∠EMF=∠BEM+∠MFD=45°,故答案为:45°;②结论:∠EOF=2∠EPF.理由:如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为:∠EOF=2∠EPF.6.(2022春·广东茂名·七年级校考阶段练习)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.【思路点拨】(1)如图1,分别过点E,F作EM//AB,FN//AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB//CD,AB//FN,得到CD//FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH//EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=12∠BEF=x°,∠EFG=12【解题过程】(1)解:如图1,分别过点E,F作EM//AB,FN//AB,∴EM//AB//FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB//CD,AB//FN,∴CD//FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)解:如图1,分别过点E,F作EM//AB,FN//AB,∴EM//AB//FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB//CD,AB//FN,∴CD//FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)解:如图2,过点F作FH//EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=12∠BEF=x°∵FH//EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG−∠EFH=15°,∴∠P=15°.7.(2021春·山西晋中·七年级统考期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EF//MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和【问题迁移】(2)如图2,射线OM与射线ON交于点O,直线m//n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由.②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.【思路点拨】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过P作PE//AD交CD于E,由平行线的性质,得到∠α=∠DPE,②根据题意,可对点P进行分类讨论:当点P在BA延长线时;当P在BO之间时;与①同理,利用平行线的性质,即可求出答案.【解题过程】解:(1)作PQ∥EF,如图:∵EF//∴EF//∴∠PAF+∠APQ=180°,∠PBN+∠BPQ=180°,∵∠APB=∠APQ+∠BPQ∴∠PAF+∠PBN+∠APB=360°;(2)①∠CPD=∠α+∠β;理由如下:如图,过P作PE//AD交CD于∵AD//∴AD//∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;②当点P在BA延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=β,∠EPD=α,∴∠CPD=∠β−∠α;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴∠CPD=∠α−∠β.8.(2022春·江苏南京·七年级南京市人民中学校联考期中)已知AB∥CD,∠ABE的角分线与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=13∠ABF,∠CDM=13∠CDF,∠BED=α°,求∠(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,请直接写出∠M与∠【思路点拨】(1)首先作EG∥AB,FH∥AB,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)先由已知得到∠ABF=n∠ABM,∠CDF=n∠CDM,由(2)的方法可得到2n∠M+∠BED=360°.【解题过程】解:(1)如图1,作EG//AB,FH//AB,∵AB∥∴EG∥∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°,∵∠BED=∠BEG+∠DEG=100°,∴∠ABE+∠CDE=260°,∵∠ABE的角平分线和∠CDE的角平分线相交于F,∴∠ABF+∠CDF=130°,∴∠BFD=∠BFH+∠DFH=130°,∵BM、DM分别是∠ABF和∠CDF的角平分线,∴∠MBF=12∠ABF∴∠MBF+∠MDF=65°,∴∠BMD=130°−65°=65°;(2)如图2,∵∠ABM=13∠ABF∴∠ABF=3∠ABM,∠CDF=3∠CDM,∵∠ABE与∠CDE两个角的角平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,∴6∠ABM+6∠CDM+∠BED=360°,∵∠BMD=∠ABM+∠CDM,∴6∠BMD+∠BED=360°,∴∠BMD=360°−α°(3)∵∠ABM=1n∠ABF,∠CDM=1n∠∴∠ABF=n∠ABM,∠CDF=n∠CDM,∵∠ABE与∠CDE两个角的角平分线相交于点F,∴∠ABE=2n∠ABM,∠CDE=2n∠CDM,∴2n∠ABM+2n∠CDM+∠BED=360°,∵∠M=∠ABM+∠CDM,∴2n∠M+∠BED=360°.9.(2022春·江苏扬州·七年级校考阶段练习)已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠APD,求∠AND【思路点拨】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;(2)作PQ∥AB,易得AB∥PQ∥CD,根据平行线的性质,即可证得∠PAB+∠CDP∠APD=180°;(3)先证明∠NOD=12∠PAB,∠ODN=12∠【解题过程】解:(1)∵∠A=50°,∠D=150°,过点P作PQ∥AB,∴∠A=∠APQ=50°,∵AB∥CD,∴PQ∥CD,∴∠D+∠DPQ=180°,则∠DPQ=180°150°=30°,∴∠APD=∠APQ+∠DPQ=50°+30°=80°;(2)∠PAB+∠CDP∠APD=180°,如图,作PQ∥AB,∴∠PAB=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠CDP+∠DPQ=180°,即∠DPQ=180°∠CDP,∵∠APD=∠APQ∠DPQ,∴∠APD=∠PAB(180°∠CDP)=∠PAB+∠CDP180°;∴∠PAB+∠CDP∠APD=180°;(3)设PD交AN于O,如图,∵AP⊥PD,∴∠APO=90°,由题知∠PAN+12∠PAB=∠APD,即∠PAN+12∠又∵∠POA+∠PAN=180°∠APO=90°,∴∠POA=12∠PAB∵∠POA=∠NOD,∴∠NOD=12∠PAB∵DN平分∠PDC,∴∠ODN=12∠PDC∴∠AND=180°∠NOD∠ODN=180°12(∠PAB+∠PDC由(2)得∠PAB+∠CDP∠APD=180°,∴∠PAB+∠PDC=180°+∠APD,∴∠AND=180°12(∠PAB+∠PDC=180°12(180°+∠APD=180°12=45°,即∠AND=45°.10.(2022春·浙江杭州·七年级校考期中)如图1,已知AB//CD,P是直线AB,CD外的一点,PF⊥CD于点F,PE交AB于点E,满足∠FPE=60°.(1)求∠AEP的度数;(2)如图2,射线PN从PE出发,以每秒10°的速度绕P点按逆时针方向匀速旋转,当PN到达PF时立刻返回至PE,然后继续按上述方式旋转;射线EM从EA出发,以相同的速度绕E点按顺时针方向旋转至EP后停止运动,此时射线PN也停止运动.若射线PN、射线EM同时开始运动,设运动时间为t秒.①当射线PN平分∠EPF时,求∠MEP的度数(0°<∠MEP<180°);②当直线EM与直线PN相交所成的锐角是60°时,则t=.【思路点拨】(1)根据平行线的性质及三角形外角性质可得答案;(2)①由角平分线的定义得∠EPN=30°,再根据三角形外角性质可得答案;②利用三角形外角性质列出方程,通过解方程即可得到问题的答案.【解题过程】解:(1)如图1,∵AB//CD,PF⊥CD,∴PF⊥AB,∴∠AMP=90°,∵∠FPE=60°,∴∠AEP=∠FPE+∠AMP=150°;(2)如图2,①当PN平分∠EPF时,∠EPN=30°时,运动时间t=3010=3(秒),此时ME∴∠AEM=3×10°=30°,∴∠MEP=150°﹣30°=120°;PN继续运动至PF时,返回时,当PN平分∠EPF时,运动时间至6010+30∴∠AEM=9×10°=90°,∴∠MEP=150°﹣90°=60°;当第二次PE运动至PF时,当PN平分∠EPF时,运动了6010∴∠AEM=15×10°=150°,∴∠MEP=150°﹣150°=0°,不符合题意;综上所述,∠MEP的度数为60°或120°;②如图3,当0≤t≤6时,此时∠EPN=∠AEM=10t,∠NEH=10t,∠PEN=30°,∠PHE=180°﹣∠HPE﹣∠PEH=180°﹣10t﹣30°﹣10t=150°﹣20t,当150°﹣20t=120°时,t=32当150°﹣20t=60°时,t=92当6<t≤12时,此时∠EPN=120°﹣10t,∠NEH=∠AEM=10t,∠PEN=30°,∠PHE=30°,不成立,当12<t≤15时,此时∠EPN=10t﹣120°,∠NEH=∠AEM=10t,∠PEN=30°,∠PHE=270°﹣20t,∠PHE=270°﹣20t=60°时,t=212(不合题意),∠PHE=270°﹣20t=120°,t=15故答案为:32或911.(2022春·湖北武汉·七年级校联考阶段练习)如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.【思路点拨】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【解题过程】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.12.(2021春·浙江·七年级期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC,CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=50°,∠C=75°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB//CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB//DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.【思路点拨】(1)过点C作CF∥AB,利用平行线的判定和性质解答即可;(2)分别画图3和图4,根据平行线的性质可计算∠B的度数;(3)分别画图,根据平行线的性质计算出∠B的度数.【解题过程】解:(1)AB∥DE,理由是:如下图,过点C作CF∥AB,∴∠B=∠BCF=50°,∵∠BCD=75°,∴∠DCF=25°,∵∠D=25°,∴∠D=∠DCF=25°,∴CF∥DE,∴AB∥DE;(2)如下图,∵AB∥CD,∴∠B=∠BCD=25°;如图4:∵AB∥CD,∴∠B+∠BCD=180°,∴∠ABC=180°25°=155°;(3)由(1)得:∠B=85°25°=60°;如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=25°,∵∠BCD=85°,∴∠BCF=85°25°=60°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=120°;如图6,∵∠C=85°,∠D=25°,∴∠CFD=180°85°25°=70°,∵AB∥DE,∴∠B=∠CFD=70°,如图7,同理得:∠B=25°+85°=110°,综上所述,∠B的度数为60°或120°或70°或110°.13.(2022春·广东珠海·七年级统考期中)已知AM//CN,点B为平面内一点,AB⊥BC于B.(1)如图1,点B在两条平行线外,则∠A与∠C之间的数量关系为______;(2)点B在两条平行线之间,过点B作BD⊥AM于点D.①如图2,说明∠ABD=∠C成立的理由;②如图3,BF平分∠DBC交DM于点F,BE平分∠ABD交DM于点E.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【思路点拨】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解题过程】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,∴BG//∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.14.(2021春·浙江杭州·七年级统考期中)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【思路点拨】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12∠BME【解题过程】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∵∠BME=60°,∴∠FEQ=1215.(2021秋·黑龙江哈尔滨·七年级统考期末)已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.【思路点拨】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【解题过程】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=12∠BGH∵EM平分∠HED,∴∠HEM=∠DEM=12∠HED∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE即12解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.16.(2021春·浙江宁波·七年级统考期中)如图,AB//CD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长城板项目可行性研究报告
- 年产xx剪板机项目可行性研究报告(项目计划)
- 沥青瓦项目可行性研究报告
- 职工医疗保险征缴
- 高考地理一轮复习课件 大气受热过程与气温
- 2024年动物骨胶项目资金筹措计划书代可行性研究报告
- 二年级上册数学教案-4.2.2 2、3、4的乘法口诀(3)-人教版
- 大班数学活动教案:测量
- 人教版九年级物理全册 14.2 热机的效率 教案
- 3.3 大气热力环流 课件 高一上学期 地理 湘教版(2019)必修一
- 最新浙江地图(可编辑)
- 钢丝绳破断拉力表
- APQP产品设计与开发(共97页).ppt
- GMP认证药厂固体车间及中药材提取车间平面图
- 海尔售后服务承诺
- 2020-2021学年高二物理粤教版选修3-1课时分层作业17 研究洛伦兹力 Word版含解析
- 国华太仓电厂600MW超临界直流炉控制策略
- 网络安全教育ppt课件
- 退房通知书模板
- 生物质能发电厂原料收集存在的问题及其对策
- 海螺牌水泥质量检验报告天报告加章
评论
0/150
提交评论