福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题含解析_第1页
福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题含解析_第2页
福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题含解析_第3页
福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题含解析_第4页
福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省华安一中、长泰一中等四校2025届高二数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A.1 B.2C.4 D.82.函数的图象在点处的切线的倾斜角为()A. B.0C. D.13.、是椭圆的左、右焦点,点在椭圆上,,过作的角平分线的垂线,垂足为,则的长为A.1 B.2C.3 D.44.下列直线中,与直线垂直的是()A. B.C. D.5.已知抛物线,则其焦点到准线的距离为()A. B.C.1 D.46.如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2 B.C. D.87.若函数的导函数为偶函数,则的解析式可能是()A. B.C. D.8.已知是椭圆的左焦点,为椭圆上任意一点,点坐标为,则的最大值为()A. B.13C.3 D.59.()A.-2 B.0C.2 D.310.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.11.设函数在R上存在导数,对任意的有,若,则k的取值范围是()A. B.C. D.12.不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.14.设等差数列{an}的前n项和为Sn,且S2020>0,S2021<0,则当n=_____________时,Sn最大.15.设,复数,,若是纯虚数,则的虛部为_________.16.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?18.(12分)在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.19.(12分)已知椭圆:的长轴长为6,离心率为,长轴的左,右顶点分别为A,B(1)求椭圆的方程;(2)已知过点的直线交椭圆于M、N两个不同的点,直线AM,AN分别交轴于点S、T,记,(为坐标原点),当直线的倾斜角为锐角时,求的取值范围20.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.21.(12分)已知两动圆:和:,把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,取曲线上的相异两点、满足:且点与点均不重合.(1)求曲线的方程;(2)证明直线恒经过一定点,并求此定点的坐标;22.(10分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.2、A【解析】求出导函数,计算得切线斜率,由斜率求得倾斜角【详解】,设倾斜角为,则,,故选:A3、A【解析】延长交延长线于N,则选:A.【点睛】涉及两焦点问题,往往利用椭圆定义进行转化研究,而角平分线性质可转化到焦半径问题,两者切入点为椭圆定义.4、C【解析】,,若,则,项,符合条件,故选5、B【解析】化简抛物线的方程为,求得,即为焦点到准线的距离.【详解】由题意,抛物线,即,解得,即焦点到准线的距离是故选:B6、C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C7、C【解析】根据题意,求出每个函数的导函数,进而判断答案.【详解】对A,,为奇函数;对B,,为奇函数;对C,,为偶函数;对D,,既不是奇函数也不是偶函数.故选:C.8、B【解析】利用椭圆的定义求解.【详解】如图所示:,故选:B9、C【解析】根据定积分公式直接计算即可求得结果【详解】由故选:C10、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C11、C【解析】构造函数,求导后利用单调性,对题干条件变形后得到不等关系,求出答案.【详解】令,则恒成立,故单调递增,变形为,即,从而,解得:,故k的取值范围是故选:C12、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.14、1010【解析】先由S2020>0,S2021<0,判断出,,即可得到答案.【详解】等差数列{an}的前n项和为,所以,因为1+2020=1010+1011,所以,所以.,所以,所以当n=1010时,Sn最大.故答案为:1010.15、【解析】由复数除法的运算法则求出,又是纯虚数,可求出,从而根据共轭复数及虚部的定义即可求解.【详解】解:因为复数,,所以,又是纯虚数,所以,所以,所以所以的虛部为,故答案:.16、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地铁,则乙可在第5,6,7站下地铁,有3种方案;若甲在第5站下地铁,则乙可在第6,7站下地铁,有2种方案;若甲在第6站下地铁,则乙可在第7站下地铁,有1种方案;综上,甲比乙先下地铁的方案共有(种).18、(1)(2)【解析】(1)根据等差数列的前项和公式,即可求解公差,再计算通项公式;(2)根据(1)的结果,利用裂项相消法求和.【小问1详解】设的公差为,由已知得,解得,所以.【小问2详解】所以.19、(1)(2)【解析】(1)根据椭圆的长轴和离心率,可求得,进而得椭圆方程;(2)先判断直线斜率为正,然后设出直线方程,和椭圆方程联立,整理得根与系数的关系,利用直线方程求出点S、T的坐标,再根据确定的表达式,将根与系数的关系式代入化简,求得结果.【小问1详解】由题意可得:解得:,所以椭圆的方程:【小问2详解】当直线l的倾斜角为锐角时,设,设直线,由得,从而,又,得,所以,又直线的方程是:,令,解得,所以点S为;直线的方程是:,同理点T为·所以,因为,所以,所以∵,∴,综上,所以的范围是20、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.21、(1);(2)证明见解析,.【解析】(1)设两动圆的公共点为,则有,运用椭圆的定义,即可得到,,,进而得到的轨迹方程;(2),设,,,,设出直线方程,联立方程组,利用韦达定理法及向量的数量积的坐标表示,即可得到定点.【小问1详解】设两动圆的公共点为,则有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论