版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省嘉峪关市一中数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足:,,则()A. B.C. D.2.已知且,则下列不等式恒成立的是A. B.C. D.3.已知,,若,则()A.9 B.6C.5 D.34.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.6.命题“,”否定是()A., B.,C., D.,7.已知向量,,若与共线,则实数值为()A. B.C.1 D.28.的二项展开式中,二项式系数最大的项是第()项.A.6 B.5C.4和6 D.5和79.已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A. B.C. D.10.某企业为节能减排,用万元购进一台新设备用于生产.第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元.设该设备使用了年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于()A. B.C. D.11.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.12.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.14.已知点,,,则外接圆的圆心坐标为________15.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______16.命题“若,则二元一次不等式表示直线的右上方区域(包含边界)”的条件:_________,结论:_____________,它是_________命题(填“真”或“假”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.18.(12分)如图,正方形和四边形所在的平面互相垂直,.(1)求证:平面;(2)求平面与平面的夹角.19.(12分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标20.(12分)已知椭圆与双曲线有相同的焦点,且的短轴长为(1)求的方程;(2)若直线与交于P,Q两点,,且的面积为,求k21.(12分)已知抛物线C:焦点F的横坐标等于椭圆的离心率.(1)求抛物线C的方程;(2)过(1,0)作直线l交抛物线C于A,B两点,判断原点与以线段AB为直径的圆的位置关系,并说明理由.22.(10分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A2、C【解析】∵且,∴∴选C3、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.4、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A5、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.6、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.7、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D8、A【解析】由二项展开的中间项或中间两项二项式系数最大可得解.【详解】因为二项式展开式一共11项,其中中间项的二项式系数最大,易知当r=5时,最大,即二项展开式中,二项式系数最大的为第6项.故选:A9、D【解析】由题意可得两点的坐标满足圆,然后由圆的性质可得当时,弦长最小,当过点时,弦长最长,再根据向量数量积的运算律求解即可【详解】设点,则以A,B为圆心,2为半径的两圆方程分别为和,因为两圆过,所以和,所以两点的坐标满足圆,因为点与不重合的点A,B共线,所以为圆的一条弦,所以当弦长最小时,,因为,半径为2,所以弦长的最小值为,当过点时,弦长最长为4,因为,所以当弦长最小时,的最大值为,当弦长最大时,的最小值为,所以的取值范围为,故选:D10、D【解析】设该设备第年的营运费为万元,利用为等差数列可求年平均盈利额,利用基本不等式可求其最大值.【详解】设该设备第年的营运费为万元,则数列是以2为首项,2为公差的等差数列,则,则该设备使用年的营运费用总和为,设第n年的盈利总额为,则,故年平均盈利额为,因为,当且仅当时,等号成立,故当时,年平均盈利额取得最大值4.故选:D.【点睛】本题考查等差数列在实际问题中的应用,注意根据题设条件概括出数列的类型,另外用基本不等式求最值时注意检验等号成立的条件.11、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A12、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.14、【解析】求得的垂直平分线的方程,在求得垂直平分线的交点,则问题得解.【详解】线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.线段中点坐标为,线段斜率为,所以线段垂直平分线的斜率为,故线段的垂直平分线方程为,即.由.所以外接圆的圆心坐标为.故答案为:.【点睛】本题考查直线方程的求解,直线交点坐标的求解,属综合基础题.15、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:16、①.②.二元一次不等式表示直线的右上方区域(包含边界)③.真【解析】由二元一次不等式的意义可解答问题.【详解】因为,二元一次不等式所表示的区域如下图所示:所以在的条件下,二元一次不等式表示直线的右上方区域(包含边界),此命题是真命题.故答案为:;二元一次不等式表示直线的右上方区域(包含边界);真三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.18、(1)证明见解析(2)【解析】(1)由题意可证得,所以以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用空间向量证明,(2)求出两个平面的法向量,利用空间向量求解【小问1详解】∵平面平面,平面平面,∴平面,∴,以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则,.设平面的法向量为,则,令,则,∵平面,∴∥平面.【小问2详解】,设平面的法向量为,则,令,则.∴.由图可知平面与平面的夹角为锐角,所以平面与平面的夹角为.19、(1);(2)答案见解析,直线过定点.【解析】(1)首先根据顶点为得到,再根据离心率为得到,从而得到椭圆C的方程.(2)设,,,与椭圆联立得到,利用直线BM与直线BN的斜率之积为和根系关系得到,从而得到直线恒过的定点.【详解】(1)一个顶点为,故,又,即,所以故椭圆的方程为(2)若直线l的斜率不存在,设,,此时,与题设矛盾,故直线l斜率必存在设,,,联立得,∴,∵,即∴,化为,解得或(舍去),即直线过定点【点睛】方法点睛:定点问题,一般从三个方法把握:(1)从特殊情况开始,求出定点,再证明定点、定值与变量无关;(2)直接推理,计算,在整个过程找到参数之间的关系,代入直线,得到定点.20、(1)(2)或k=1.【解析】(1)根据题意求得双曲线的焦点即知椭圆焦点,结合椭圆短轴长,可求得椭圆标准方程;(2)将直线方程和椭圆方程联立,整理得,从而得到根与系数的关系式,然后求出弦长以及到直线PQ的距离,进而表示出,由题意得关于k的方程,解得答案.【小问1详解】双曲线即,故双曲线交点坐标为,由此可知椭圆焦点也为,又的短轴长为,故,所以,故椭圆的方程为;【小问2详解】联立,整理得:,其,设,则,所以=,点到直线PQ的距离为,所以=,又的面积为,则=,解得或k=1.21、(1);(2)原点在以线段AB为直径的圆上,详见解析.【解析】(1)利用椭圆方程可得其离心率,进而可求抛物线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度长沙新环境房屋租赁与节能改造合同
- 2025年度办公室助理实习生实习期间权益保护合同
- 家具买卖合同
- 农业生产质量管理体系建设作业指导书
- 房屋买卖合同委托书
- 合伙人合作协议合同
- 企业危机管理作业指导书
- 第三方代付款协议书
- 三农村环境保护与管理方案
- 建筑垃圾买卖合同
- 电网工程设备材料信息参考价(2024年第四季度)
- 2025年江苏农牧科技职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025江苏连云港市赣榆城市建设发展集团限公司招聘工作人员15人高频重点提升(共500题)附带答案详解
- 2025年全年日历-含农历、国家法定假日-带周数竖版
- 《东北大学宣传》课件
- 社会主义从空想到科学的发展
- 江苏省扬州市蒋王小学2023~2024年五年级上学期英语期末试卷(含答案无听力原文无音频)
- 一年级上册必背古诗
- 氯盐型和环保型融雪剂发展现状
- 平顶山第四届名师名班主任名校长培养方案
- 蒸压加气混凝土砌块作业指导书(共14页)
评论
0/150
提交评论