2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题含解析_第1页
2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题含解析_第2页
2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题含解析_第3页
2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题含解析_第4页
2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省温州市“十五校联合体”数学高二上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.2.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.3.曲线在处的切线如图所示,则()A.0 B.C. D.4.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.805.过双曲线Ω:(a>0,b>0)右焦点F作x轴的垂线,与Ω在第一象限的交点为M,且直线AM的斜率大于2,其中A为Ω的左顶点,则Ω的离心率的取值范围为()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)6.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离7.已知等比数列中,,,则首项()A. B.C. D.08.函数在处有极值为,则的值为()A. B.C. D.9.已知直线与平行,则的值为()A. B.C. D.10.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.11.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.12.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.14.抛物线的焦点为F,准线为l,C上的一点M在l上的射影为N,已知线段FN的垂直平分线方程为,则___________;___________.15.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________16.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.18.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值19.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.20.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标21.(12分)已知是等差数列,,.(1)求的通项公式;(2)设的前项和,求的值.22.(10分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速(转/秒)1615129每小时生产有缺陷的零件数(件)10985通过观察散点图,发现与有线性相关关系:(1)求关于的回归直线方程;(2)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?(参考:回归直线方程为,其中,)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.2、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D3、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.4、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C5、B【解析】求点A和M的坐标,进而表示斜率,可得,整理得b2>2ac+2a2,从而可解得离心率的范围.【详解】F(c,0),设M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.7、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B8、B【解析】根据函数在处有极值为,由,求解.【详解】因为函数,所以,所以,,解得a=6,b=9,=-3,故选:B9、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.10、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B11、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.12、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.14、①.2②.4【解析】设点,根据给定条件结合抛物线定义可得线段FN的中点及点M都在线段FN的垂直平分线,再列式计算作答.【详解】抛物线的焦点,准线l:,设点,则,线段FN的中点,由抛物线定义知:,即点M在线段FN的垂直平分线,因此,,解得,而,则有,,所以,.故答案为:2;4【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离15、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.16、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到关于角A的关系式,求解A(II)再结合正弦面积公式得到三角形的边长的求解【详解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得18、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求解.【小问1详解】设圆心为,,则由题意得:,解得:或(舍去),故该圆的方程为【小问2详解】圆心到直线的距离为,由垂径定理得:,解得:19、(1)(2)【解析】(1)根据正弦定理把化成,利用和角公式可得从而求得角;(2)根据三角形的面积和角的值求得,由余弦定理求得边得到的周长.试题解析:(1)由已知可得(2)又,周长为考点:正余弦定理解三角形.20、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B(a,0),F(c,0)∵,∴解得从而b2=a2-c2=3∴椭圆C的方程;【小问2详解】设直线l的方程为y=kx+m,,∵直线l不过点A,因此-2k+m≠0由得时,,,∴由,可得3k=m-2k,即m=5k,故l的方程为y=kx+5k,恒过定点(-5,0).21、(1);(2).【解析】(1)设等差数列的公差为,利用题中等式建立、的方程组,求出、的值,然后根据等差数列的通项公式求出数列的通项公式;(2)利用等差数列前项和公式求出,然后由求出的值.【详解】(1)设等差数列的公差为,则,解得,,数列的通项为;(2)数列的前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论