版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省泗县一中2025届高二数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有()A.0个 B.1个C.2个 D.3个2.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为A.11 B.12C.13 D.143.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为4.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.5.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. B.C. D.6.抛物线的准线方程是()A. B.C. D.7.若椭圆的右焦点与抛物线的焦点重合,则椭圆的离心率为()A. B.C. D.8.如图,在棱长为1的正方体中,点B到直线的距离为()A. B.C. D.9.若方程表示双曲线,则()A. B.C. D.10.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.11.等差数列中,已知,则()A.36 B.27C.18 D.912.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.14.已知向量,,若,则实数=________.15.直线与圆交于A、B两点,当弦AB的长度最短时,则三角形ABC的面积为________16.用组成所有没有重复数字的五位数中,满足与相邻并且与不相邻的五位数共有____________个.(结果用数值表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值18.(12分)如图,四棱锥,,,,为等边三角形,平面平面ABCD,Q为PB中点(1)求证:平面平面PBC;(2)求平面PBC与平面PAD所成二面角的正弦值19.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值20.(12分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.21.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和22.(10分)如图,矩形ABCD,点E,F分别是线段AB,CD的中点,,,以EF为轴,将正方形AEFD翻折至与平面EBCF垂直的位置处.请按图中所给的方法建立空间直角坐标系,然后用空间向量坐标法完成下列问题(1)求证:直线平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.【详解】解:因为椭圆的图像关于原点对称,对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数,其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,即函数图象能等分该椭圆面积的函数个数有2个,故选C.【点睛】本题考查了椭圆的几何性质、函数的奇偶性及函数的对称性,重点考查了函数的性质,属基础题.2、B【解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人∴从编号1~480的人中,恰好抽取480/20=24人,接着从编号481~720共240人中抽取240/20=12人考点:系统抽样3、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力4、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.5、A【解析】设七巧板正方形边长为4,求出阴影部分的面积,再利用几何概型概率公式计算作答.【详解】设七巧板正方形边长为4,则大阴影等腰三角形底边长为4,底边上的高为2,可得小正方形对角线长为2,小正方形边长为,小阴影等腰直角三角形腰长为,小白色等腰直角三角形底边长为2,则左上角阴影等腰直角三角形腰长为2,因此,图中阴影部分面积,而七巧板正方形面积,于是得七巧板中白色部分面积为,所以在此正方形中随机地取一点,则该点恰好取自白色部分的概率为.故选:A6、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.7、B【解析】求出抛物线的焦点坐标,可得出的值,进而可求得椭圆的离心率.【详解】抛物线的焦点坐标为,由已知可得,可得,因此,该椭圆的离心率为.故选:B.8、A【解析】以为坐标原点,以为单位正交基底,建立空间直角坐标系,取,,利用向量法,根据公式即可求出答案.【详解】以为坐标原点,以为单位正交基底,建立如图所示的空间直角坐标系,则,,取,,则,,则点B到直线AC1的距离为.故选:A9、C【解析】根据曲线方程表示双曲线方程有,即可求参数范围.【详解】由题设,,可得.故选:C.10、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.11、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B12、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.14、【解析】由可求得【详解】因为,所以,故答案为:【点睛】本题考查向量垂直的坐标表示,属于基础题15、【解析】由于直线过定点,所以当时,弦AB的长度最短,然后先求出的长,再利用勾股定理可求出的长,从而可求出三角形ABC的面积【详解】因为直线恒过定点,圆的圆心,半径为,所以当时,弦AB的长度最短,因为,所以,所以三角形ABC的面积为,故答案为:16、【解析】由题意,先利用捆绑法排列和,再利用插空法排列和,即可得答案.【详解】因为满足与相邻并且与不相邻,则将捆绑,内部排序得,再对和全排列得,利用插空法将和插空得,所以满足题意得五位数有.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为18、(1)证明见解析(2)【解析】(1)取的中点为,连接,可证,从而可利用面面垂直的判定定理可证平面平面.(2)建立如图所示的空间直角坐标系,求出平面的法向量、平面的法向量后可得二面角的正弦值.【小问1详解】如图,取的中点为S,连接,因为为等边三角形,故,,而平面平面ABCD,平面平面,平面,故平面,而平面,故,而,故,因,故平面,因平面,故,因,故平面,而平面,故平面平面.【小问2详解】连接,因为,故四边形为平行四边形,而,故四边形为矩形,所以,由(1)可得平面,故建立如图所示的空间直角坐标系,则所以,,设平面的法向量为,则即,取,则,设平面的法向量为,则即,取,则,故,故平面PBC与平面PAD所成二面角的正弦值为.19、(1)(2),【解析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以与同号,令则,由,得,此时为减函数,由,得,此时为增函数,则,故,在单调递增,所以,20、(1)(2)或【解析】(1)由已知设圆C的方程为,点代入计算即可得出结果.(2)由已知可得圆心C到直线的距离,利用点到直线的距离公式计算即可求得值.【小问1详解】设圆心坐标为,半径为,圆C的圆心在直线上,.则圆C的方程为,圆C过点,则,解得:则,圆C的圆心坐标为.则圆C的方程为;【小问2详解】圆心C到直线的距离.则,解得或21、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.22、(1)证明见解析;(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西职业技术学院《生物高分子材料在组织工程领域应用设计》2023-2024学年第一学期期末试卷
- 陕西艺术职业学院《专业技法基础应用》2023-2024学年第一学期期末试卷
- 棉花设备购销合同范例
- 2024年版总公司对分公司授权经营协议版B版
- 2024至2030年硫转移-金属钝化综合剂项目投资价值分析报告
- 2024至2030年环保型镜面不锈钢内胆项目投资价值分析报告
- 2024至2030年河豚项目投资价值分析报告
- 种植工人合同范例
- 陕西铁路工程职业技术学院《新媒体应用技术》2023-2024学年第一学期期末试卷
- 啤酒供销合同范例
- 《高等数学》课程思政教学大纲
- 国际疾病分类手术码(ICD-9-CM-3)使用手册
- 物资部对标管理实施方案
- 上海工程技术大学《管理信息系统》 ~学年 第 一 学期 实验报告
- 职工医保基数调整对比明细表Excel模板
- 送你一个字评语2022
- 放射科优质护理服务PPT学习教案
- GB_T 22627-2022水处理剂 聚氯化铝_(高清-最新版)
- 教学团队建设总结报告
- 看守所释放证明书
- 鱼骨图-PPT模板
评论
0/150
提交评论