版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆兵团第二师华山中学2025届高一数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数,,若在区间上为增函数,则一定为正数的是A. B.C. D.2.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.93.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.4.已知为所在平面内一点,,则()A. B.C. D.5.在正内有一点,满足等式,,则()A. B.C. D.6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.817.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”8.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.9.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.10.给出下列命题:①函数为偶函数;②函数在上单调递增;③函数在区间上单调递减;④函数与的图像关于直线对称.其中正确命题的个数是()A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的零点依次为a,b,c,则=________12.函数的零点个数为___13.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.14.已知角的终边经过点,则的值等于_____15.过点且在轴,轴上截距相等的直线的方程为___________.16.已知,函数,若函数有两个零点,则实数k的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,.(1)若,求;(2)若,求m的取值范围;18.△ABC的两顶点A(3,7),B(,5),若AC的中点在轴上,BC的中点在轴上(1)求点C的坐标;(2)求AC边上中线BD的长及直线BD的斜率19.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围20.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围21.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】在区间上为增函数,即故选点睛:本题运用函数的单调性即计算出结果的符号问题,看似本题有点复杂,在解析式的给出时含有复合部分,只要运用函数的解析式求值,然后利用函数的单调性,做出减法运算即可判定出结果2、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.4、A【解析】根据平面向量的线性运算及平面向量基本定理即可得出答案.【详解】解:因为为所在平面内一点,,所以.故选:A5、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.6、B【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.7、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D8、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.9、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.10、C【解析】①函数为偶函数,因为是正确的;②函数在上单调递增,单调增是正确的;③函数是偶函数,在区间上单调递增,故选项不正确;④函数与互为反函数,根据反函数的概念得到图像关于对称.是正确的.故答案为C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:12、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.13、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:14、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.15、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况16、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)时,求出集合,,从而求出,由此能求出(2)由,,当时,,当时,,由此能求出取值范围【详解】解:(1)时,集合,∴,∴或(2)∵集合,,,∴,∴当时,,解得,当时,,解得综上,的取值范围是18、(1)(2),【解析】(1)由条件利用线段的中点公式求得点C的坐标;(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率试题解析:(1)设,考点:1.待定系数法求直线方程;2.中点坐标公式19、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有20、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得21、(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度品牌管理代签合同授权委托书3篇
- 二零二五年度商业地产存量房交易合同范本4篇
- 二零二四年度医疗健康企业护士劳动合同3篇
- 正规2025年度版权转让合同3篇
- 2025年度智能仓储物流系统建设与运营合同范本4篇
- 2025年度汽车销售代理合同标准范本4篇
- 2025年度快递行业大客户售后服务保障合同4篇
- 2025版住宅小区公共区域装修施工合同2篇
- 2025年度数据中心场地租赁合同(含电力供应保障)4篇
- 2025年度国家级自然保护区场地保护承包合同样本4篇
- 《医院财务分析报告》课件
- 2025老年公寓合同管理制度
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 2024中国汽车后市场年度发展报告
- 感染性腹泻的护理查房
- 厨房绩效考核方案细则
- 2024年上海市各区高三语文二模试卷【文言文阅读题】汇集练附答案解析
- 部编版语文一年级下册第五单元整体教学设计教案
- 废铁收购厂管理制度
- 物品赔偿单范本
- 《水和废水监测》课件
评论
0/150
提交评论