版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省定边县联考2023-2024学年中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A. B. C. D.2.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70° B.65° C.62° D.60°3.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或54.一次函数y=2x+1的图像不经过(
)A.第一象限B.第二象限C.第三象限D.第四象限5.若,则x-y的正确结果是()A.-1 B.1 C.-5 D.56.观察下列图案,是轴对称而不是中心对称的是()A. B. C. D.7.估计的值在()A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间8.下列方程中是一元二次方程的是()A. B.C. D.9.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有()A.5个 B.4个 C.3个 D.2个10.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.12.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.13.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____14.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.115.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则≥1﹣1.16.计算的结果为_____.三、解答题(共8题,共72分)17.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.18.(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.19.(8分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积20.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.21.(8分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.
22.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.23.(12分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.24.如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D.【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.2、A【解析】
由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.3、D【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.4、D【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.5、A【解析】由题意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故选:A.6、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.7、B【解析】∵9<11<16,∴,∴故选B.8、C【解析】
找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C.【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.9、C【解析】试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.考点:等腰三角形的性质;勾股定理.10、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(本大题共6个小题,每小题3分,共18分)11、8.03×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.12、π【解析】试题分析:∵,∴S阴影===.故答案为.考点:旋转的性质;扇形面积的计算.13、.【解析】
解:令AE=4x,BE=3x,∴AB=7x.∵四边形ABCD为平行四边形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.14、1【解析】
据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.15、①②③④⑤⑥⑦.【解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.【详解】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.则∠DAH=∠BAM,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正确;∵BM+DN≥1,(当且仅当BM=DN时,取等号)∴BM=DN时,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一点G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,当点M和点B重合时,点N和点C重合,此时,MN最大=AB,即:,∴≤≤1,⑧错误;∵MN=NH=BM+DN∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;∵△MAN≌△HAN,∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN•MP=AM•AN•sin45°,S△AEF=AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.16、﹣2【解析】
根据分式的运算法则即可得解.【详解】原式===,故答案为:.【点睛】本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.三、解答题(共8题,共72分)17、这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.18、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.试题解析:原式=·=当a=0时,原式==2.考点:分式的化简求值.19、(1)证明见解析;(2).【解析】
(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.【详解】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,点E、F分别是AB、AC的中点,
∴AE=AF,
∴AE=AF=DE=DF,
∴四边形AEDF是菱形;
(2)如图,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面积S=EF•AD=×5×5=.【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.20、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30-a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台.总费用为万元。∴方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。21、(2)1【解析】试题分析:(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==,得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以⊙O的半径为1.试题解析:(1)证明:连结OC,如图,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切线(2)解:连结BC,如图∵AB为直径∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语言认知托班课程设计
- 阅读与写作课程设计
- 陷波器课程设计模拟电子
- 车道荷载计算课程设计
- 走向小学游戏课程设计
- 金笔作文课程设计
- 蓝牙音箱设计课程设计
- 车辆保安课程设计案例
- 申论规范用词课程设计
- 踏板操完整课程设计
- 新大《新疆地质概论》教案第6章 矿产资源
- 七年级下册《Reading 1 A brave young man》优质课教案牛津译林版-七年级英语教案
- EGD杀生剂剂化学品安全技术说明(MSDS)zj
- GB/T 12229-2005通用阀门碳素钢铸件技术条件
- 超分子化学-第三章 阴离子的络合主体
- 控制变量法教学课件
- 血压计保养记录表
- 食品的售后服务承诺书范本范文(通用3篇)
- 新外研版九年级上册(初三)英语全册教学课件PPT
- 初中中考英语总复习《代词动词连词数词》思维导图
- 植物和五行关系解说
评论
0/150
提交评论