湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题【含答案】_第1页
湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题【含答案】_第2页
湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题【含答案】_第3页
湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题【含答案】_第4页
湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖南省邵阳市新宁县2025届数学九年级第一学期开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组多项式中,没有公因式的是()A.ax﹣bx和by﹣ay B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b22、(4分)不等式组的解集是()A.x>-2 B.x<1C.-1<x<2 D.-2<x<13、(4分)在同一坐标系中,函数y=kx与y=3x﹣k的图象大致是()A. B. C. D.4、(4分)有11名同学参加100米赛跑,预赛成绩各不相同,要取前6名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这11名同学成绩的()A.中位数 B.平均数 C.众数 D.方差5、(4分)若正多边形的一个外角是,则该正多边形的内角和为()A. B. C. D.6、(4分)如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.7、(4分)方程的解是()A. B., C., D.,8、(4分)若分式中的a、b的值同时扩大到原来的3倍,则分式的值()A.不变 B.是原来的3倍 C.是原来的6倍 D.是原来的9倍二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)10、(4分)已知,是二元一次方程组的解,则代数式的值为_____.11、(4分)若,则a2﹣6a﹣2的值为_____.12、(4分)已知x=2时,分式的值为零,则k=__________.13、(4分)若正比例函数y=kx的图象经过点(2,4),则k=_____.三、解答题(本大题共5个小题,共48分)14、(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由.15、(8分)某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲乙购树苗数量销售单价购树苗数量销售单价不超过500棵时800元/棵不超过1000棵时800元/棵超过500棵的部分700元/棵超过1000棵的部分600元/棵设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为元,若都在乙家购买所需费用为元;(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?16、(8分)如图,Rt△ABO的顶点A是双曲线y1=与直线y2=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求△AOC的面积.(3)直接写出使y1>y2成立的x的取值范围17、(10分)数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.第三类:选正六边形.(仿照上述方法,写出探究过程及结论)探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?第四类:选正三角形和正方形在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程60x+90y=360整理,得2x+3y=1.我们可以找到唯一组适合方程的正整数解为.镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)第六类:选正方形和正六边形,(不写探究过程,只写出结论)探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),18、(10分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)20、(4分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增长3cm.假设这棵数生长x年其树围才能超过2.4m.列满足x的不等关系:__________________.21、(4分)若a、b,c为三角形的三边,则________。22、(4分)已知是一元二次方程的一根,则该方程的另一个根为_________.23、(4分)当k取_____时,100x2﹣kxy+4y2是一个完全平方式.二、解答题(本大题共3个小题,共30分)24、(8分)(2017四川省乐山市)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.25、(10分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:活动1:买一支毛笔送一本书法练习本;活动2:按购买金额的九折付款.某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.(1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;(2)请问:该校选择哪种优惠活动更合算?26、(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料.甲印刷厂提出:每份材料收1.5元印刷费,另收120元的制版费:乙印刷厂提出:每份材料收3元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量(份)51020…甲印刷厂收费(元)127.5

…乙印刷厂收费(元)

30…(2)设选择甲印刷厂的费用为y1元,选择乙印刷厂的费用为y2元,分别写出y1,y2关于x的函数关系式;(3)在印刷品数量大于500份的情况下选哪家印刷厂印制省钱?请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】A、ax﹣bx=x(a﹣b)和by﹣ay=﹣y(a﹣b),故两多项式的公因式为:a﹣b,故此选项不合题意;B、3x﹣9xy=3x(1﹣3y)和6y2﹣2y=﹣2y(1﹣3y),故两多项式的公因式为:1﹣3y,故此选项不合题意;C、x2﹣y2=(x﹣y)(x+y)和x﹣y,故两多项式的公因式为:x﹣y,故此选项不合题意;D、a+b和a2﹣2ab+b2=(a﹣b)2,故两多项式没有公因式,故此选项符合题意;故选:D.此题主要考查了公因式,正确把握确定公因式的方法是解题关键.2、D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D.点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3、B【解析】分析:根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.详解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A.

k<0,−k<0.解集没有公共部分,所以不可能,故此选项错误;B.

k<0,−k>0.解集有公共部分,所以有可能,故此选项正确;C..解集没有公共部分,所以不可能,故此选项错误;D.正比例函数的图象不对,所以不可能,故此选项错误.故选B.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:

①当时,函数的图象经过第一、二、三象限;

②当时,函数的图象经过第一、三、四象限;

③当时,函数的图象经过第一、二、四象限;

④当时,函数的图象经过第二、三、四象限.4、A【解析】

由于有11名同学参加预赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】解:共有11名学生参加预赛,取前6名,所以小明需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第6名学生的成绩是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否进入决赛.故选A.本题考查了统计量的选择,解题的关键是学会运用中位数的意义解决实际问题.5、C【解析】

根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.【详解】由题意,正多边形的边数为,其内角和为.故选C.考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.6、A【解析】

取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.本题考查了正方形的性质,根据题意确定E点的位置是解题关键.7、C【解析】

把方程两边的看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解.【详解】方程经移项、合并同类项后,化简可得:,即,则解为,故选C.本题考查一元二次方程的化简求解,要掌握因式分解法.8、B【解析】试题分析:根据分式的基本性质即可求出答案.解:原式=;故选B.点睛:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、或【解析】

根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.【详解】由勾股定理得,AD=,3<<4,(同理可求BD=)故答案为:AD或BD.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.10、1【解析】

依据平方差公式求解即可.【详解】,,.故答案为:1.本题主要考查的是二元一次方程组的解和平方差公式,发现所求代数式与已知方程组之间的关系是解题的关键.11、-1【解析】

把a的值直接代入计算,再按二次根式的运算顺序和法则计算.【详解】解:当时,a2﹣6a﹣2=(3﹣)2﹣6(3﹣)﹣2=19﹣6﹣18+6﹣2=﹣1.本题考查了实数的混合运算,解题的关键是掌握实数的运算法则.12、-6【解析】由题意得:6+k=0,解得:k=-6.故答案:-6.【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.13、2【解析】三、解答题(本大题共5个小题,共48分)14、(1)EB=FD;(2)EB=FD,证明见解析;(3)∠EGD不发生变化.【解析】

(1)利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(2)利用长方形的性质、等边三角形的性质和全等三角形的证明方法可证明△FAD≌△BAE,由全等三角形的性质即可得到EB=FD;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不会发生变化,是一个定值,为60°.【详解】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:不会发生改变;同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.本题考查了正方形的性质、全等三角形的判定和性质,等边三角形的性质以及矩形的性质,题目的综合性很强,难度也不小,解题的关键是对特殊几何图形的性质要准确掌握.15、(1)610000;1;(2)当x>1000时,y甲=700x+50000,y乙=600x+200000,x为正整数;(3)当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.【解析】

(1)、(2)依据表格提供的数据,然后结合公式总价单价数量进行计算即可;(3)分为,,三种情况进行讨论即可.【详解】解:(1)甲家购买所要费用;都在乙家购买所需费用.故答案为:610000;1.(2)当时,,,为正整数,(3)当时,到两家购买所需费用一样;当时,甲家有优惠而乙家无优惠,所以到甲家购买合算;又.当时,,解得,当时,到两家购买所需费用一样;当时,,解得,当时,到甲家购买合算;当时,,解得,当时,到乙家购买合算.综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.本题主要考查的是一次函数的应用,明确题目中涉及的数量关系是解题的关键.16、(1)y=﹣,y=﹣x+2;(2)3;(1)-1<x<0或x>1【解析】【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为1且为负数,由此即可求出k;(2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC=S△ODA+S△ODC即可求出;(1)根据图象即可求得.【详解】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣1,又∵y=,即xy=k,∴k=﹣1.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),∵A、C在反比例函数的图象上,∴,解得,,∴交点A(﹣1,1),C为(1,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(1+1)=3.(1)-1<x<0或x>1.【点睛】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.也考查了函数和不等式的关系.17、详见解析【解析】

根据题意列出二元一次方程或三元一次方程,求出方程的正整数解,即可得出答案.【详解】解:第五类:设x个正三角形,y个正六边形,则60x+10y=360,x+2y=6,正整数解是或,即镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形(或4个正三角形和1个正六边形)的内角可以拼成一个周角,所以用正三角形和正六边形可以进行平面镶嵌;第六类:设x个正方形,y个正六边形,则90x+10y+=360,3x+4y=1,此方程没有正整数解,即镶嵌平面时,不能在一个顶点周围围绕着正方形和正六边形的内角拼成一个周角,所以不能用正方形和正六边形进行平面镶嵌;第七类:设x个正三角形,y个正方形,z个正六边形,则60x+90y+10z=360,2x+3y+4z=1,正整数解是,即镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形、1个正六边的内角可以拼成一个周角,所以用正三角形、正方形、正六边形可以进行平面镶嵌.本题考查了平面镶嵌和三元一次方程、二元一次方程的解等知识点,能求出每个方程的正整数解是解此题的关键.18、2.【解析】

利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可【详解】由题意,设

y-1=k(x+3)(k≠0),得:0-1=k(-4+3).解得:k=1.所以当x=-1时,y=1(-1+3)+1=2.即当x=-1时,y的值为2.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、180°﹣n°【解析】

由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.【详解】∵四边形ABCD是平行四边形,∴∠B=180°﹣∠C,由折叠的性质可知,∠GHC=∠C,∴∠GHB=180°﹣∠C,由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,∴360°﹣2∠C=n°,解得,∠C=180°﹣n°,故答案为:180°﹣n°.本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20、5+3x>240【解析】

因为树栽种时的树围为5cm,以后树围每年增长约3cm,x年后树围将达到(5+3x)cm.

不等关系:x年其树围才能超过2.4m.【详解】根据题意,得5+3x>240.故答案为:5+3x>240.本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.21、2a【解析】

根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.【详解】∵a,b,c是三角形的三边,三角形任意两边之和大于第三边,任意两条边之差小于第三边,∴a+b-c>0,b-c-a<0,所以==.本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.22、-2【解析】

由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.【详解】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.23、±40【解析】

利用完全平方公式判断即可确定出k的值.【详解】解:∵100x2-kxy+4y2是一个完全平方式,

∴k=±40,

故答案为:±40此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.二、解答题(本大题共3个小题,共30分)24、证明见解析.【解析】试题分析:根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论