北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第1页
北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第2页
北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第3页
北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第4页
北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页北京市第一五六中学2025届九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是A. B. C. D.2、(4分)函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、(4分)直线y=2x﹣6与x轴的交点坐标是()A.(0,3) B.(3,0) C.(0,﹣6) D.(﹣3,0)4、(4分)下列事件中必然事件有()①当x是非负实数时,x≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个 B.2个 C.3个 D.4个5、(4分)正方形的一条对角线之长为3,则此正方形的边长是()A. B.3 C. D.6、(4分)如果解关于x的方程x-6x-5+1=mx-5(m为常数)时产生增根,那么A.﹣1 B.1 C.2 D.﹣27、(4分)用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是().A.(x-4)2=14 B.(x-4)2=18 C.(x+4)2=14 D.(x+4)2=188、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.18二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)当a__________时,分式有意义.10、(4分)如图,,以点为圆心,任意长为半径画弧,交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作,垂足为点,则的长为________________.11、(4分)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.12、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.13、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在菱形中,,点将对角线三等分,且,连接.(1)求证:四边形为菱形(2)求菱形的面积;(3)若是菱形的边上的点,则满足的点的个数是______个.15、(8分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.16、(8分)如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,∠MDN的两边分别与AB,AC相交于M,N两点,且∠MDN+∠BAC=180°.(1)求证AE=AF;(2)若AD=6,DF=2,求四边形AMDN的面积.17、(10分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.18、(10分)长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.20、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.21、(4分)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是________cm.22、(4分)如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.23、(4分)把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图1,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图2,已知Rt△ABC中,∠ACB=90°,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.(2)如图3,在△ABC中,∠A<∠B<∠C.若△ABC的三个内角平分线的交点P是该三角形的自相似点,求该三角形三个内角的度数.25、(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.26、(12分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

结合图形,根据平移的概念进行求解即可得.【详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.2、B【解析】

根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.3、B【解析】

把y=0代入y=2x﹣6即可求得直线与轴的交点坐标.【详解】当y=0时,2x-6=0,解得:x=3,所以,与x轴的交点坐标是(3,0),选B。此题考查一次函数图象上点的坐标特征,解题关键在于把y=0代入解析式4、B【解析】

根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,x≥0②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【解析】

根据正方形的性质和勾股定理列方程求解即可.【详解】解:设正方形的边长为a,∵正方形的一条对角线之长为3,∴a2+a2=32,∴a=(负值已舍去),故选:A.本题考查了正方形的性质和勾股定理,熟练掌握正方形的性质是解决问题的关键.6、A【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.故选A.本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7、A【解析】

依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【详解】解:x2-8x+2=0,x2-8x=-2,x2-8x+16=-2+16,(x-4)2=14,故选A.移项,配方,即可得出选项.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,能够正确配方是解此题的关键.8、B【解析】

延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选B.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据分式有意义的条件可得,再解不等式即可.【详解】解:分式有意义,则;解得:,故答案为:.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10、5cm【解析】

根据角平分线的性质、RT△中,30°所对的直角边等于斜边的一般,本题得以解决.【详解】解:由题意可得,

OC为∠MON的角平分线,

∵,OC平分∠AOB,∴∠MOP=∠MON=30°,

∵,∴∠ODP=90°,∵OP=10,

∴PD=OP=5,故答案为:5cm.本题考查了角平分线的性质及直角三角形的性质,解题的关键是掌握直角三角形的性质.11、1【解析】

众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【详解】解:在这一组数据中1是出现次数最多的,故众数是1;故答案为1.12、1【解析】试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.试题解析:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.考点:1.菱形的判定与性质;2.矩形的性质.13、56°【解析】

根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2);(3)1【解析】

(1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;(2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.【详解】(1)∵四边形ABCD是菱形,∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,∴△AED≌△AEB≌△CFD≌△CFB(SAS)∴DE=BE=DF=BF,∴四边形DEBF为菱形.(2)连接DB,交AC于O,∵四边形ABCD是菱形,∴DB⊥AC,,又∵AE=EF=FC=2,∴AO=3,AD=2DO,∴,∴,∴(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.易知PE+PF的最小值=2当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,∵PE+PE=,2<<4,∴线段AD上存在两个点P,满足PE+PF=∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.故答案为1.本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四边形CNPG为正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考点:一次函数综合题.【详解】请在此输入详解!16、(1)详见解析;(2)【解析】

(1)依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;

(2)判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=2,即可得出结论.【详解】(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,又∵DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;(2)∵∠MDN+∠BAC=180°,∴∠AMD+∠AND=180°,又∵∠DNF+∠AND=180°∴∠EMD=∠FND,又∵∠DEM=∠DFN,DE=DF,∴△DEM≌△DFN,∴S△DEM=S△DFN,∴S四边形AMDN=S四边形AEDF,∵AD=6,DF=2,∴Rt△ADF中,AF=∴∴本题主要考查了全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.17、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.【解析】

根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,根据面积长宽,列出关于x的一元二次方程,解之即可,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.【详解】根据题意得:长,宽,根据题意得:整理得:解得:舍去,,纸盒的高为5cm,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,,,解得:,根据题意得:,,y随着x的增大而减小,当取到最大值时,y取到最小值,即当时,,x的取值范围为:,y的最小值为1.本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.18、(1)y甲=0.8x;y乙=;(2)见解析【解析】

(1)结合图象,利用待定系数法即可求出y甲,y乙关于x的函数关系式即可;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论求解即可.【详解】(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,解得,.所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.本题考查了一次函数的实际应用,正确求得付款金额y甲,y乙与原价x之间的函数关系式是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、5【解析】

由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值【详解】∵M为AE中点,N为EP中点∴MN为△AEP的中位线,∴MN=AP若要MN最大,则AP最大.P在CD上运动,当P运动至点C时PA最大,此时PA=CA是矩形ABCD的对角线AC==10,MN的最大值=AC=5故答案为5此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP20、x>1【解析】

利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.【详解】解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,∴当y>0时,x﹣1>0,解得x>1,故答案为:x>1.本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.21、1【解析】

解∵等腰三角形的两条边长分别是3cm、7cm,∴当此三角形的腰长为3cm时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7cm,底边长为3cm,∴此等腰三角形的周长=7+7+3=1cm,故答案为:1.22、1【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.【详解】解:易证△AFD′≌△CFB,

∴D′F=BF,

设D′F=x,则AF=16-x,

在Rt△AFD′中,(16-x)2=x2+82,

解之得:x=6,

∴AF=AB-FB=16-6=10,故答案为:1.本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.23、【解析】

抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即本题主要考查了函数图像的平移规律,即“左右横,上下纵,正减负加”的理解和应用是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)【解析】

(1)根据已知条件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出结论;

(2)根据∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各内角的度数.【详解】解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,

∴CD=AB,

∴CD=BD,

∴∠BCE=∠ABC,

∵BE⊥CD,∴∠BEC=90°,

∴∠BEC=∠ACB,

∴△BCE∽△ABC,

∴E是△ABC的自相似点;

(2)∵P是△ABC的内心,∴∠PBC=∠ABC,∠PCB=∠ACB,

∵△ABC的内心P是该三角形的自相似点,∴△BCP∽△ABC

∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,

∴∠A+2∠A+4∠A=180°,

∴∠A=,

∴该三角形三个内角度数为:,,.本题考查了相似三角形的判定以及三角形的内心作法和作一角等于已知角,此题综合性较强,注意从已知分析获取正确的信息是解决问题的关键.25、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】

(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;

(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;

②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.26、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论