版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页安徽省太和县联考2024-2025学年数学九上开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若,则下列各式中,错误的是()A. B. C. D.2、(4分)点(﹣2,﹣1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、(4分)如图,四边形ABCD中,AB=CD,AD∥BC,AE∥DC∠B=60°,BC=3,△ABE的周长为6,则四边形ABCD的周长是().A.8 B.10 C.12 D.164、(4分)已知点M(1-a,a+2)在第二象限,则a的取值范围是()A.a>-2 B.-2<a<1 C.a<-2 D.a>15、(4分)下列因式分解正确的是()A. B.C. D.6、(4分)如图,当y1>y2时,x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<27、(4分)(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH8、(4分)如图,直线经过点A(a,)和点B(,0),直线经过点A,则当时,x的取值范围是()A.x>-1 B.x<-1 C.x>-2 D.x<-2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若是完全平方式,则的值是__________.10、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为.11、(4分)有一块田地的形状和尺寸如图,则它的面积为_________.12、(4分)如图,菱形ABCD的边长为8,,点E、F分别为AO、AB的中点,则EF的长度为________.13、(4分)如图,在中,直径,弦于,若,则____三、解答题(本大题共5个小题,共48分)14、(12分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.(1)求直线和直线的解析式;(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.15、(8分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点坐标;(1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;(3)将△ABC绕点O逆时针转90°,得到△A1B1C1,画出△A1B1C1.16、(8分)已知A(0,2),B(4,0),C(6,6)(1)在图中的直角坐标系中画出△ABC;(2)求△ABC的面积.17、(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.18、(10分)(﹣)2(+)+|2﹣|﹣B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在□ABCD中,一角的平分线把一条边分成3cm和4cm两部分,则□ABCD的周长为__________.20、(4分)直线与平行,且经过(2,1),则+=____________.21、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.22、(4分)分式方程有增根,则的值为__________。23、(4分)若方程的两根为,,则________.二、解答题(本大题共3个小题,共30分)24、(8分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.25、(10分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.26、(12分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.(2)结论应用:①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据不等式性质分析即可解答.【详解】解:A、两边都乘以-1,不等号的方向改变,选项变形错误,故A符合题意;B、两边都减3,不等号的方向不变,故B不符合题意;
C、两边都乘以-2,不等号的方向改变,故C不符合题意;
D、两边都乘以,不等号的方向不变,故D不符合题意;故选:A.主要考查了不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2、C【解析】
根据横纵坐标的符号可得相关象限.【详解】∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C.本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.3、A【解析】
根据平行四边形的判定和等腰梯形的性质,证明△ABE是等边三角形,从而可知等腰梯形的腰长,也就可以求出其周长.【详解】解:∵AD∥BC,AE∥DC∴四边形ADCE为平行四边形∴EC=AD,AE=CD∵AB=CD∴AB=AE又∵∠B=60°,∴△ABE是等边三角形,∵△ABE的周长为6,∴BE=2,∵BC=3,∴EC=AD=1,∴等腰梯形的周长=AB+BC+CD+AD=2+3+2+1=8,故选A.此题主要考查学生对等腰梯形的性质及平行四边形的性质的掌握情况.4、D【解析】因为点M(1−a,a+2)在第二象限,∴1−a<0,解得:a>1,故选D.5、C【解析】
利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.【详解】解:A、,故此选项不符合题意;
B、,故此选项不符合题意;C、,故此选项符合题意;
D、,故此选项不符合题意;
故选:C.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【解析】分析:根据图像即可解答.详解:观察图像可知:当x<1时,y1=kx+b在y2=mx+n的上方,即y1>y2..故选C.点睛:本题考查一次函数的图像问题,主要是通过观察当x在哪个范围内时对应的函数值较大.7、D【解析】
先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1
在直角三角形DCF中,∴矩形DCGH为黄金矩形
故选:D.本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.8、A【解析】
先求出点A坐标,再结合图象观察出直线直线在直线下方的自变量x的取值范围即可.【详解】把A(a,-2)代入y2=2x,得-2=2a,解得:a=-1,所以点A(-1,-2),观察图象可知当x>-1时,,故选A.本题考查了一次函数与一元一次不等式,观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.注意数形结合思想的运用.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据完全平方公式即可求解.【详解】∵是完全平方式,故k=此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.10、8【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.考点:平行四边形的性质.11、1.【解析】
先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、2【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果【详解】∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∴OA=AB=4,∴OB=,∵点E、F分别为AO、AB的中点,∴EF为△AOB的中位线,∴EF=OB=2.故答案是:2.考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.13、【解析】
根据圆周角定理求出∠COB,根据正弦的概念求出CE,根据垂径定理解答即可.【详解】由圆周角定理得,∠COB=2∠A=60°,∴CE=OC•sin∠COE=2×=,∵AE⊥CD,∴CD=2CE=2,故答案为:2.本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=-x+1,y=x;(2)m=或;(3)S=.【解析】
(1)理由待定系数法即可解决问题;
(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.【详解】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=-x+1.
设直线OD的解析式为y=mx,则有3m=1,m=,
∴直线OD的解析式为y=x.(2)存在.
理由:如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
∴|-m+1-|=3,
解得m=或.(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3-t)代入得:b=-1t,
∴直线O′C′的解析式为y=3x-1t.∴E(,0).
联立y=3x-1t与y=,解得x=.
∴S=S△OFQ-S△OEP=OF•FQ-OE•PG=(1+t)()-=.本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.15、(1)(1,-3);(1)详见解析;(3)详见解析【解析】
(1)根据关于原点对称的点的特征即可;(1)根据平移方向画出图形即可;(3)根据旋转角度及旋转方向画出图形即可.【详解】(1)点A关于原点对称的点坐标为(1,-3)(1)如下图所示,(3)如下图所示,本题考查了关于原点对称的点的特征及平移画图,旋转画图问题,解题的关键是明确平移方向或旋转方向.16、(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.【解析】
(1)在坐标系内描出各点,再顺次连接即可;(2)根据△ABC的面积等于正方形的面积减去3个三角形的面积求出即可.【详解】解:(1)在平面直角坐标系中画出△ABC如图所示:(2)△ABC的面积=6×6-×4×2-×2×6-×4×6=36-4-6-12=1.故答案为:(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点,是解题的关键.17、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.18、﹣1.【解析】
首先利用平方差公式化简,进而利用二次根式混合运算法则计算得出答案.【详解】原式=(5﹣3)(﹣)+1﹣1﹣=1﹣1+1﹣1﹣=﹣1.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、2cm或22cm【解析】如图,设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∵∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.∴BC=3+4=1.①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.所以□ABCD的周长为22cm或2cm.故答案为:22cm或2cm.点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.20、6【解析】∵直线y=kx+b与y=−5x+1平行,∴k=−5,∵直线y=kx+b过(2,1),∴−10+b=1,解得:b=11.∴k+b=-5+11=621、()n.【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.【详解】第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2第3个正方形的边长是2,对角线长为2=()3;…,∴第n个正方形的对角线长为()n;故答案为()n.本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.22、3【解析】
方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.【详解】解:∵分式方程有增根,
∴x-1=0,x+1=0,
∴x1=1,x1=-1.
两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=3,
当x=-1时,m=-1+1=0,
当m=0时,方程为=0,
此时1=0,
即方程无解,
∴m=3时,分式方程有增根,
故答案为:m=3.本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.23、1【解析】
解:∵∴∴或.∵,∴∴故答案为:1.二、解答题(本大题共3个小题,共30分)24、(1)0.2;(2)【解析】
(1)根据题意可知客厅中心的正方形边长为4m,再结合图形即可求得回字型黑色边框的宽度;(2)根据白色瓷砖区域Ⅱ的面积由四个全等的长方形及客厅中心的正方形组成,可得关于x的方程,解方程后进行讨论即可得答案.【详解】(1)由已知可得客厅中心的正方形边长为4m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度市场需求的房产买卖合同2篇
- 产品订货合同范文
- 工程材料采购合同
- 人教版九年级化学第四单元自然界的水4化学式与化合价课时4有关相对分子质量的计算教学课件
- 基于2024年度的智能家居系统开发合同
- 青年员工职业发展规划银行文档
- 农商银行新员工培训文档
- 新车销售代购合同范本
- 护理与安全用药与管理
- 2024年度版权许可合同:音乐作品授权使用协议2篇
- 2024年大型科学仪器共享与服务合作协议
- 2024年湖北省武汉市中考英语真题(含解析)
- 2023秋部编版四年级语文上册第2单元大单元教学设计
- 2024年国家公务员考试《行测》真题卷(副省级)答案及解析
- 搬迁服务项目 投标方案(技术标)
- 全年病案室报告
- 小区停车位施工方案
- 2025届四川省新高考八省适应性联考模拟演练政治试卷(含答案)
- 新能源发电技术 课件 第一章-新能源发电概述
- 煤矿事故案例试题库及答案
- 八年级上学期期中家长会课件详解
评论
0/150
提交评论