![(培优特训)专项9.4旋转常考综合运用-2022-2023学年八年级数学下册《考点解读专题训练》(苏科版)(原卷版)_第1页](http://file4.renrendoc.com/view7/M01/16/3F/wKhkGWcW3-SATjHyAAF1bgpTUic853.jpg)
![(培优特训)专项9.4旋转常考综合运用-2022-2023学年八年级数学下册《考点解读专题训练》(苏科版)(原卷版)_第2页](http://file4.renrendoc.com/view7/M01/16/3F/wKhkGWcW3-SATjHyAAF1bgpTUic8532.jpg)
![(培优特训)专项9.4旋转常考综合运用-2022-2023学年八年级数学下册《考点解读专题训练》(苏科版)(原卷版)_第3页](http://file4.renrendoc.com/view7/M01/16/3F/wKhkGWcW3-SATjHyAAF1bgpTUic8533.jpg)
![(培优特训)专项9.4旋转常考综合运用-2022-2023学年八年级数学下册《考点解读专题训练》(苏科版)(原卷版)_第4页](http://file4.renrendoc.com/view7/M01/16/3F/wKhkGWcW3-SATjHyAAF1bgpTUic8534.jpg)
![(培优特训)专项9.4旋转常考综合运用-2022-2023学年八年级数学下册《考点解读专题训练》(苏科版)(原卷版)_第5页](http://file4.renrendoc.com/view7/M01/16/3F/wKhkGWcW3-SATjHyAAF1bgpTUic8535.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(培优特训)专项9.4旋转常考综合运用1.(2020秋•乌兰察布期末)如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.12.(2021春•罗湖区校级期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③ B.①②④ C.①③④ D.②③④3.(2022春•高州市期末)如图,在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分面积为.4.(2022秋•福州期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是.5.(2021秋•驿城区期末)如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是.6.(2021秋•肇源县期末)如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有(填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=120°7.(2021秋•信丰县期末)如图,将矩形ABCD绕点A顺时针旋转到AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=120°,则∠α=.8.(2020秋•赣榆区期末)如图,点P是等边△ABC内的一点,PA=6,PB=8,PC=10.若点P′是△ABC外的一点,且△P′AB≌△PAC,则∠APB的度数为.9.(2021•江西模拟)如图,P是等边△ABC内一点,PA=4,PB=2,PC=2,则△ABC的边长为.10.(2021•镇雄县一模)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于.11.(2020•江都区三模)如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为.12.(2022秋•恩施市期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将CO绕点C顺时针方向旋转60°得到CD,连接AD,OD.(1)当α=150°时,求证:△AOD为直角三角形;(2)求∠DAO的度数;(3)请你探究:当α为多少度时,△AOD是等腰三角形?13.(2022秋•青山湖区期末)如图,△ABC和△AMN均为等边三角形,将△AMN绕点A旋转(△AMN在直线AC的右侧).(1)求证:△BAM≌△CAN;(2)若点C,M,N在同一条直线上,①求∠BMC的度数;②点M是CN的中点,求证:BM⊥AC.14.(2022•三穗县校级模拟)如图,P是等边△ABC内的一点,且PA=3,PB=4,PC=5,若将△PAC绕点A逆时针旋转后,得到△P'AB,(1)求点P与P'之间的距离;(2)求∠APB的度数.15.(2021秋•平泉市期末)如图,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM方向以1cm/s的速度运动,运动时间为t.当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形.(2)当△BCD为直角三角形时,求t的值.16.(2022秋•思明区校级月考)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.17.(2022秋•竹山县期中)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连接CD,试判断△CBD的形状.(3)求∠BDC的度数.18.(2022•黄冈模拟)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.19.(2022春•兰州期中)(1)如图1,△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,为了探究BD、DE、CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD、DE、CE之间的等量关系式是.(无需证明)(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D、E在BC上,∠DAE=60°、∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD、DE、CE之间的等量关系,并证明你的结论.20.(2021春•江岸区校级月考)△ABC中,∠A=45°,∠CBA=α,点D在边AB上,将线段CD逆时针旋转β得到CE,连接DE.(1)当α=45°,β=90°时,求证:AD2+DB2=DE2.(2)当α=30°,β=120°时,若CE=BE,求的值.21.(2021•中江县模拟)如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.22.(2020秋•辉县市期中)如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.23.(2022秋•大冶市期末)如图,在△ABC中,BA=BC,∠ABC=40°,将△ABC绕点B按逆时针方向旋转100°,得到△DBE,连接AD,CE交于点F.(1)求证:△ABD≌△CBE;(2)求∠AFC的度数.24.(2022秋•青山湖区期末)阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区孤独症患者关怀的个人方法计划
- 分配任务与跟进进度的秘书工作计划
- 品牌资产与市场风险的关联研究计划
- 全面提升团队绩效的年度规划计划
- 强化职能部门之间的配合计划
- 如何选择合适的品牌推广渠道计划
- 2025年物位仪项目建议书
- 2025年数字货币金融项目发展计划
- 2025年沥青试验仪器项目发展计划
- 新员工入职引导及工作流程简明教程
- 口腔百问百答
- 二年级乘除法口诀专项练习1000题-推荐
- 贷款项目资金平衡表
- 高标准农田建设项目监理日志
- [整理]10kv开关站标准设计说明(最终版)
- 分级诊疗制度管理办法
- 义务教育语文课程标准2022年版
- 公务员入职登记表
- 九年级新目标英语单词表默写最新版
- 临水临电计算公式案例
- 2022新教科版六年级科学下册第二单元《生物的多样性》全部教案(共7节)
评论
0/150
提交评论