2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题含解析_第1页
2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题含解析_第2页
2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题含解析_第3页
2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题含解析_第4页
2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省汉中中学高二数学第一学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,则()A.2 B.C.1 D.2.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面3.已知命题p:,,则命题p的否定为()A., B.,C, D.,4.已知数列满足,则()A. B.1C.2 D.45.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切6.已知向量与平行,则()A. B.C. D.7.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.98.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.689.已知,且,则的最大值为()A. B.C. D.10.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件11.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.12.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.14.已知抛物线的焦点到准线的距离为,则抛物线的标准方程为___________.(写出一个即可)15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.已知曲线的方程是,给出下列四个结论:①曲线C恰好经过4个整点(即横、纵坐标均为整数的点);②曲线有4条对称轴;③曲线上任意一点到原点的距离都不小于1;④曲线所围成图形的面积大于4;其中,所有正确结论的序号是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C1:的左、右焦点分别为,且椭圆C1与抛物线C2:y2=2px(p>0)在第一象限的交点为Q,已知.(1)求的面积(2)求抛物线C2的标准方程.18.(12分)已知等比数列的前项和为,,.数列的前项和为,且,(1)分别求数列和的通项公式;(2)若,为数列的前项和,是否存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列?若存在,求出所有满足条件的,,的值;若不存在,说明理由19.(12分)如图所示的四棱锥的底面是一个等腰梯形,,且,是△的中线,点E是棱的中点(1)证明:∥平面(2)若平面平面,且,求平面与平面夹角余弦值(3)在(2)条件下,求点D到平面的距离20.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C的方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程21.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值22.(10分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D2、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D3、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.4、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B5、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C6、D【解析】根据两向量平行可求得、的值,即可得出合适的选项.【详解】由已知,解得,,则.故选:D.7、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等8、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.9、A【解析】由基本不等式直接求解即可得到结果.【详解】由基本不等式知;(当且仅当时取等号),的最大值为.故选:A.10、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.11、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D12、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:14、(答案不唯一)【解析】设出抛物线方程,根据题意即可得出.【详解】设抛物线的方程为,根据题意可得,所以抛物线的标准方程为.故答案为:(答案不唯一).15、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、②③④【解析】根据曲线方程作出曲线,即可根据题意判断各结论的真假【详解】曲线的简图如下:根据图象以及方程可知,曲线C恰好经过9个整点,它们是,,,所以①不正确;由图可知,曲线有4条对称轴,它们分别是轴,轴,直线和,②正确;由图可知,曲线上任意一点到原点的距离都不小于1,③正确;由图可知,曲线所围成图形的面积等于,④正确故答案为:②③④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设,由椭圆的定义可得,结合余弦定理可得出的值,从而可得面积.(2)设,根据的面积结合椭圆的方程求出点的坐标,代入抛物线可得答案.【小问1详解】由椭圆方程知a=2,b=1,,设,则即,求得所以的面积为【小问2详解】设由(1)中,得又,,所以代入抛物线方程得,所以所以抛物线的标准方程为18、(1),;(2)不存在,理由见解析.【解析】(1)利用数列为等比数列,将已知的等式利用首项和公比表示,得到一个方程组,求解即可得到首项和公比,结合等比数列的通项公式即可求出;将已知的等式变形,得到数列为等差数列,利用等差数列通项公式求出,再结合数列的第项与前项和之间的关系进行求解,即可得到;(2)先利用等比数列求和公式求出,从而得到的表达式,然后利用裂项相消求和法求出,假设存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列,利用等比中项、等差中项以及进行化简变形,得到假设不成立,故可得到答案【详解】(1)因为数列为等比数列,设首项为,公比为,由题意可知,所以,所以,由②可得,即,所以或2,因为,所以,所以,所以,由,可得,所以数列为等差数列,首项为,公差为1,故,则,当时,,当时,也适合上式,故(2)由,可得,所以,所以,假设存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列,则有,所以,则,即,因为,所以,即,所以,所以,则,所以,则,所以,即,所以,这与已知的,,互不相等矛盾,故不存在不同的正整数,,(其中,,成等差数列),使得,,成等比数列【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19、(1)证明见解析;(2);(3).【解析】(1)连接、,平行四边形的性质、线面平行的判定可得平面、平面,再根据面面平行的判定可得平面平面,利用面面平行的性质可证结论;(2)取的中点为,连接,证明出平面,,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.(3)利用等体积法,求D到平面的距离【小问1详解】连接、,由、分别是棱、的中点,则,平面,平面,则平面又,且,∴且,四边形是平行四边形,则,平面,平面,则平面又,可得平面平面.又平面∴平面【小问2详解】由知:,又平面平面,平面平面,平面,∴平面取的中点为,连接、,由且,故四边形为平行四边形,故,则△为等边三角形,故,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系易知,,所以、、、、,,,,设平面的法向量为,则,令,得设平面的法向量为,则,令,得设平面与平面所成的锐二面角为.则,即平面与平面所成锐二面角的余弦值为【小问3详解】由(2)知:平面,则是三棱锥的高且,四边形为平行四边形,又,即为菱形,∴,而,则,且,∴,故.又,由上易知:△为等腰三角形且,∴,则D到平面的距离.20、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.21、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论