




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省金华市名校数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则值域为()A. B.C. D.2.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④3.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾束,中等稻禾束,下等稻禾束,各等稻禾总数都不足斗.如果将束上等稻禾加上束中等稻禾,或者将束中等稻禾加上束下等稻禾,或者将束下等稻禾加上束上等稻禾,则刚好都满斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的束上等稻禾是多少斗?()A. B.C. D.4.若方程在区间内有两个不同的解,则A. B.C. D.5.已知a=log20.3,b=20.3,c=0.30.3,则a,b,c三者的大小关系是()A. B.C. D.6.下列函数图象中,不能用二分法求零点的是()A. B.C. D.7.函数,,则函数的图象大致是()A. B.C. D.8.化学上用溶液中氢离子物质的量浓度的常用对数值的相反数表示溶液的,例如氢离子物质的量浓度为的溶液,因为,所以该溶液的是1.0.现有分别为3和4的甲乙两份溶液,将甲溶液与乙溶液混合,假设混合后两份溶液不发生化学反应且体积变化忽略不计,则混合溶液的约为()(精确到0.1,参考数据:.)A.3.2 B.3.3C.3.4 D.3.89.若是的重心,且(,为实数),则()A. B.1C. D.10.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x3二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为120°,半径为3,则扇形的面积是________.12.将函数图象上所有点的横坐标压缩为原来的后,再将图象向左平移个单位长度,得到函数的图象,则的单调递增区间为____________13.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;14.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.15.已知为偶函数,当时,,当时,,则不等式的解集为__________16.若实数x,y满足,且,则的最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,18.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值19.已知函数(1)证明:;(2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论;(3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值20.如图,在正方体中,点分别是棱的中点.求证:(1)平面;(2)平面21.已知集合.(1)当时,求;(2)当时,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先求的范围,再求的值域.【详解】令,则,则,故选:C2、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C3、D【解析】设出未知数,根据题意列出方程即可解出.【详解】设束上等稻禾是斗,束中等稻禾是斗,束下等稻禾是斗,则由题可得,解得,所以束上等稻禾是斗.故选:D.4、C【解析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C5、D【解析】利用指数函数与对数函数的单调性即可得出大小关系【详解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),则a,b,c三者的大小关系是b>c>a.故选:D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题6、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.7、C【解析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C8、C【解析】求出混合后溶液的浓度,再转化为pH【详解】由题意pH为时,氢离子物质的量浓度为,混合后溶液中氢离子物质的量浓度为,pH为故选:C9、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.10、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可.【详解】扇形的圆心角为120°,即,故扇形面积.故答案为:.12、【解析】根据函数图象的变换,求出的解析式,结合函数的单调性进行求解即可.【详解】由数图象上所有点的横坐标压缩为原来的后,得到,再将图象向左平移个单位长度,得到函数的图象,即令,函数的单调递增区间是由,得,的单调递增区间为.故答案为:13、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时14、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.15、【解析】求出不等式在的解,然后根据偶函数的性质可得出不等式在上的解集.【详解】当时,令,可得,解得,此时;当时,令,解得,此时.所以,不等式在的解为.由于函数为偶函数,因此,不等式的解集为.故答案为:.【点睛】本题考查分段函数不等式的求解,同时也涉及了函数奇偶性的应用,考查运算求解能力,属于中等题.16、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)k=-1,反向;(2)k=1【解析】由题得由此能求出,,与反向.由,得,由数量积运算求出【详解】,,,,即又向量,不共线,,解得,,即,故与反向,与夹角为,
,又故,即解得故时,【点睛】本题考查向量平行、向量垂直的性质等基础知识,熟记共线定理,准确计算是关键,是基础题18、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象如下图所示,且,,,由图象得有三个不同的实数根,则,,所以,即,所以,所以,故.19、(1)证明见解析;(2)函数具有性质P,证明见解析;(3).【解析】(1)直接利用对数的运算求解;(2)取函数图象上四个点,证明函数具有性质P;(3)设(或),求出,再换元利用二次函数求函数的最值得解.【小问1详解】解:【小问2详解】解:由(1)知,的图象关于点中心对称,取函数图象上两点,,显然线段CD的中点恰为点M;再取函数图象上两点,,显然线段EF的中点也恰为点M因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,所以函数具有性质P小问3详解】解:,则(或),则,记(或),则,记,则,所以,当,即时,20、(1)证明见解析(2)证明见解析【解析】(1)易证得四边形为平行四边形,可知,由线面平行的判定可得结论;(2)由正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年轻油蒸汽转化催化剂资金需求报告代可行性研究报告
- 从业人员安全生产责任制
- Brand KPIs for neobankingC6 Bank in Brazil-英文培训课件2025.4
- 碳纳米管负载纳米零价铁耦合希瓦氏菌去除水中Cr(Ⅵ)的研究
- 汽车传感器与检测技术电子教案:光电式曲轴位置传感器
- 陕西益成物业管理有限责任公司小区分册
- 南通保洁现场管理制度
- 介绍楷模活动方案
- 仓储互动交流活动方案
- 代理招募活动方案
- PDCA循环-FOCUS-PDCA提高院内静脉血栓栓塞症规范预防率经典案例汇报
- 专升本英语智慧树知到答案2024年江苏财会职业学院
- 【S邮政代理金融业务营销现状及问题调查报告11000字(论文)】
- 广西贵港市桂平市2023-2024学年八年级下学期期末英语试题
- 广东省珠海市香洲区2023-2024学年部编版八年级下学期期末历史试题(无答案)
- 苏教版小学四年级下册科学期末测试卷及完整答案(历年真题)
- 高三二模作文“认清客观现实”与“安抚自己心理”审题立意及范文
- 《不断变化的人口问题》核心素养目标教学设计、教材分析与教学反思-2023-2024学年初中历史与社会人教版新课程标准
- 血液透析恶心呕吐的应急预案
- 物流仓储中心项目建设背景和必要性
- 安徽省涡阳县2023-2024学年七年级下学期期中考试语文试题
评论
0/150
提交评论